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Practitioner’s Digest 

 
A striking feature of the United States stock market is the tendency of days with very large movements of stock 
prices to be clustered together.  We define an extreme movement in stock prices as one that can be characterized 
as a three sigma event; that is, a daily movement in the broad stock-market index that is three or more standard 
deviations away from the average movement.  We find that such extreme movements are typically preceded by, 
but not necessarily followed by, unusually large stock-price movements.  Interestingly, a similar clustering of 
extreme observations of temperature in New York City can be observed. 
 
A particularly robust finding in this paper is that extreme movements in stock prices are usually preceded by 
larger than average daily movements during the preceding three-day period.  This suggests that investors might 
fashion a market timing strategy, switching from stocks to cash in advance of predicted extreme negative stock 
returns.  In fact, we have been able to simulate market timing strategies that are successful in avoiding nearly 
eighty percent of the negative extreme move days, yielding a significantly lower volatility of returns.  We find, 
however, that a variety of alternative strategies do not improve an investor’s long-run average return over the 
return that would be earned by the buy-and-hold investor who simply stayed fully-invested in the stock market.  
 
 
Key words:  Volatility clustering, duration analysis, portfolio strategy 
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1. Introduction 
 

There is considerable empirical evidence suggesting that the random walk model for changes in stock 
prices can be rejected and that the distribution of stock returns is distinctly non-normal. Researchers have 
observed that the key deviation from normality stems from the existence of ‘fat tails’: there are a significantly 
higher number of extreme values—both negative and positive—than would be found in a normal distribution.  
This paper deals with the stock-market returns that reside in the fat tails.  Its main objective, however, is not to 
present further evidence on higher-than-normal frequency of days with large changes.  Instead, we focus on 
examining the duration between one extreme-move day and the next.  We use duration-model analysis to 
examine the factors that are associated with the onset of days with unusually large changes in the Dow Jones 
Industrial Index for the years 1900 through 2006.  We undertake a similar analysis in examining the duration 
between days with extreme movements in temperature using New York Central Park data for the years 1901 
through 2006.  We find striking similarity in the patterns of extreme change in the Dow and in New York 
temperature. We also find that the existence of extreme-move days is at least partially predictable.  Finally, we 
ask whether the predictability of extreme-value changes in the stock market can be employed to develop a 
useful portfolio-timing strategy. 

 
We make no attempt to propose a stochastic process for stock returns or temperature changes.  The 

modest goal of this paper would be accomplished if it triggers further inquiry into the question whether there 
exists a stochastic process common to many random phenomena, including stock market returns. 

 
2. The Relevant Literature 
 

The idea that no useful regularities exist in security prices that would enable investors to earn 
“abnormal” profits is one that goes back for more than a century.  While Paul Samuelson (1965) is often 
associated with the general idea that stock prices change randomly, the random walk thesis dates back at least to 
the time of Bachelier (1900).  Bachelier’s doctoral dissertation developed a theory of stochastic processes that 
was applied to prices of French government bonds. Bachelier found that price changes looked very much like a 
random walk process.  His work lay dormant for almost 60 years until it was discovered by Paul Samuelson. 

 
 Essentially Samuelson argued that economists should expect price changes to be random.  The profit 
seeking behavior of investors should eliminate any predictable movement in stock prices.  Samuelson defines 
“properly intercepted prices” as prices that at every date t ≤ T are based on all available information at Φt, 
including all past price realizations for the security.  If the security has a single payoff Xt, assumed to be a 
random variable, then for all t ≤ T:    

Pt = E (Xt / Φt) 
 

Samuelson then proved that prices will fluctuate randomly since for all t ≤ T: 
 

Pt = E (Pt+1 / Φt), or E (ΔPt+1 / Φt) = 0. 
 

If prices are properly anticipated, then all useful information contained in past price series will be incorporated 
into current prices.  Prices will follow a martingale and successive price changes will be uncorrelated. 
 
 Much of the subsequent empirical work on stock prices has found that the stock market does not meet 
the conditions for a random walk.  Lo and MacKinlay, in their book A Non-Random Walk Down Wall Street, are 
able to reject the random walk hypothesis.  They define Xt as the log of Pt and assume prices have the recursive 
relationship 

Xt = μ + Xt-1 + є t  

 
where μ is an arbitrary drift parameter and є t is the random disturbance term.  The traditional random-walk 
hypothesis restricts the є t’s to be independently and identically distributed normal random variables with a 
constant variance.  Lo and MacKinlay are able to reject the random-walk hypothesis for weekly stock returns 



The Clustering of Extreme Movements: Stock Prices and the Weather 

 3

(of both indices and individual stocks) using a simple volatility-based specification test.  Not only do they report 
significant positive serial correlation for weekly and monthly holding period returns, they further conclude that 
mean reverting models of Shiller and Perron (1985) and Fama and French (1987) cannot account for the 
departures of returns from random walk.   
 

 There is considerable evidence of several non-random patterns in the movement of stock prices.   For 
example, Keim and Stambaugh (1985), Cross (1973), French (1980), Gibbons and Hess (1981), and Rogalski 
(1984) find evidence of day-of-the-week and weekend effects on stock returns, while Bremer and Sweeny 
(1991) find extremely large negative 10-day returns are followed on average by larger-than-expected positive 
rates of return over the following days.  But none of this work appears to contradict the efficient-market 
hypothesis (EMH).  Whatever predictable patterns that do exist do not appear to be large enough (or dependable 
enough) to permit an investor to make abnormal returns after paying transactions costs.  Therefore, the evidence 
against the random walk hypothesis is not inconsistent with the practical implications of EMH. 
 
 Another predictable pattern in the behavior of stock prices is the subject of this paper.  Work by 
Osborne (1963), Alexander (1964), and Mandelbrot (1963) finds that the occurrence of transactions in a given 
stock is not independent of the past history of trades in that stock.  There is a clustering of activity.  Trading 
tends to come in “bursts.”  If recent trading activity is heavy, it is highly likely to continue to be heavy.  
Similarly, large price changes are likely to be followed by large changes in prices; as Mandelbrot (1963) writes, 
“…large changes tend to be followed by large changes—of either sign—and small changes by small 
changes…”.   
 

In this context, the ARCH model (Engel, (1982)) and its generalization to the GARCH (Bollerslev 
(1986)) specifications are relevant. These models set conditional variance equal to a constant plus a weighted 
average of past squared residuals.   These models (as well as their numerous generalizations) have been 
proposed to explain two fundamental characteristics of stock returns: the presence of a surprising large numbers 
of extreme values and the fact that both the extremes and quiet periods are clustered in time.   Despite the 
ubiquitous presence of GARCH models, however, many financial empiricists have observed that volatility 
responds asymmetrically to the nature of news—volatility tends to rise in response to “bad news” and to fall in 
response to “good news”, contrary to the predictions of GARCH models (Nelson, 1991).  GARCH models 
assume that only the magnitude and not the sign of unanticipated excess returns determines future volatility.  
Nelson (1991) recognized that large price declines forecast greater volatility than similarly large price increases.  
Since then numerous studies have found evidence of non-linearity, asymmetry, and long memory properties of 
volatility (Engel, (2004)). 

 
 Our paper complements this body of literature.  To our knowledge ours is the only study that examines 
the temporal properties of ‘fat tails’.  We analyze the time duration between extreme daily movements in the 
Dow Jones Index.  Consistent with Nelson’s findings, we find that today’s extreme return is indeed a powerful 
predictor of the next extreme value day.  Additionally, days with extreme returns are preceded by large moves, 
both for negative and positive returns, although the relationship is asymmetric.  Similarly, there is a temporal 
asymmetry—extreme value days are preceded by but are not followed by large moves days.  Interestingly, we 
find a remarkably similar pattern in extreme changes in New York temperature (measured by the percent 
deviations from daily normal temperature).  We undertake various tests to confirm the robustness of the results.   
 

Finally, we explore whether the negative extreme value days are predictable enough to devise a useful 
asset allocation portfolio strategy.  We ask whether an investor could unwind a long position in the stock market 
(as measured by the Dow Index) when the model predicts a high likelihood of a negative extreme-move day and 
temporarily hold cash.  After a fixed period over which the portfolio remains unwound, the investor is assumed 
to re-initiate a long position in the Dow Index.  We demonstrate that this portfolio strategy does not outperform 
a buy and hold investment in the Index when one allows for reasonable transaction costs.  However, this asset 
allocation strategy is successful in avoiding nearly eighty percent of the extreme negative move days, yielding a 
significantly lower volatility of returns. 
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3. The Data and Descriptive Statistics 
 

In this section, we describe the data used in the analysis of daily stock-market returns and N.Y. 
temperature changes.  We also provide some simple statistics on the magnitude and frequency of the extreme-
move days to motivate the duration analysis that follows in the next section.  

 
We employed daily data on the Dow Jones Industrial Index for all trading days in the period between 

January 1, 1900 and December 31, 2006.  Panel A of Table 1A provides some relevant statistics about the daily 
returns, measured in terms of logarithmic changes (i.e., ln ( )1t tI I −  where tI  is the value of the Index on day t).  

 
Our sample consists of 26,884 daily returns.  For this sample, the average daily return is 0.0195%, and 

the standard deviation (σ) of daily returns is 1.131%, which translates to an annualized1 mean of 7.02% and 
sigma of 21.46%.  To provide a benchmark, we generated 26,884 pseudo returns by drawing random numbers 
from a normal distribution with the same mean and sigma as in the sample of returns of the Dow Jones Index. 

 
 

Table 1A:  Dow Jones Daily Stock Returns Compared with Draws from a Normal Distribution

Panel A: Comparison of Frequencies of Days

Dow Jones Daily Returns: 1900-2006 Random Draws from a Normal Distribution

# of Sigmas From 
the Mean

Number of 
Observations

Percentage 
of total

# of Sigmas From 
the Mean

Number of 
Observations

Percentage 
of total

Greater than 1 5,203 19.4% Greater than 1 8,568 31.9%
Greater than 2 1,217 4.5% Greater than 2 1,208 4.5%
Greater than 3 427 1.6% Greater than 3 70 0.3%
Greater than 4 183 0.7% Greater than 4 1 0.0%
Greater than 5 82 0.3% Greater than 5 0 0.0%
Greater than 6 52 0.2% Greater than 6 0 0.0%

Sub-Total 7,164 Sub-Total 9,847

Total Trading Days 26,884 Total Observations 26,884

Panel B: Time Interval Between 3-Sigma Plus Days

Dow Jones Daily Returns: 1900-2006 Random Draws from a Normal Distribution
Time Interval in 

Days
Number of 

Observations
Percentage 

of total
Time Interval in 

Days
Number of 

Observations
Percentage 

of total

1 76 17.8% 1 0 0.0%
2 57 13.4% 2 0 0.0%

3 to 5 96 22.5% 3 to 5 0 0.0%
6 to 25 93 21.8% 6 to 25 4 5.8%

Subtotal 322 75.6% Subtotal 4 5.8%

Greater than 25 104 Greater than 25 65

Total 426 Total 69

Note:  A "3-Sigma Plus day" is one where the daily absolute return of Dow Jones Average is greater than or equal to 3-sigmas from the mean daily returns.  
 
 
Panel A of Table 1A shows that in about nearly eighty percent of the trading days – 80.6% to be 

precise – the Dow’s daily change was less than one sigma away from its mean daily return.  In the random 
draws from the normal distribution only 68.1% of the observations were less than one sigma away from the 
mean.  However, the contrast between the two distributions (Dow returns and draws from a normal distribution) 
is most pronounced for days where the returns are three or more sigmas away from the mean.  Extreme value 

                                                 
1 Throughout the paper, when annualizing daily returns we have assumed a 360-day calendar year. 
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days are far more prevalent for the Dow than for the normal distribution.  These findings are consistent with the 
evidence of ‘fat tails’ noted in numerous prior research studies. 

 
In Panel B of Table 1A, we examine the daily time interval between one extreme-move day to the next.  

Here we define an ‘extreme-move’ day as one where the absolute value of daily return is more than three 
sigmas away from the mean (which we will call a ‘3σ+ day’).  Interestingly, of the 426 time intervals between 
the 3σ+ days, 322 had intervals less than or equal to 25 days; and more than 31% of the 3σ+ days occurred 
within two days of each other!  This clustering of extreme-move days for the Dow is very different from what is 
found from random draws from a normal distribution.  If the stochastic process underlying the Dow’s return 
were normal, one would have observed less than 6% of extreme-move days to have a time interval of less than 
or equal to 25 days; by contrast, for the Dow this percentage is 76%. 

 
We further explore the phenomenon of the clustering of extreme-move days for the Dow in Panel A of 

Table 1B.  The average duration in days (i.e. the time interval) between one 3σ+ day and the next for the entire 
period, 1990 – 2006, was 178 days (the median was 116 days). Excluding the 1930s, this average rises to 194 
days (the median is 126 days).  Of the 427 3σ+ days, more than half occurred in 1930s.  Indeed, in the 1930s, 
9% of all trading days were characterized by returns greater than three sigmas from the mean.  By contrast, the 
1950s were years of calm: less than ¼ of 1 percent of trading days were ones with extreme moves.   

Table 1B:  Extreme- Move Days for the Dow Jones and New York Temperature : Number of Days by Decade 

Panel A Panel B

Dow Jones Daily Returns :  1900-2006 New York  Daily Average Temp's  % Deviation from Normal: 1901-2006

Decade

Number of 
3-Sigma 

Plus days

% of 
Trading 

Days

Average Duration 
Between 3-Sigma 

Plus Days Decade

Number of 
3-Sigma 

Plus days

% of 
Calendar 

Days

Average Duration 
Between 3-Sigma 

Plus Days

1900 s 37 1.47% 62 1900 s 11 0.34% 292
1910 s 28 1.16% 93 1910 s 30 0.82% 121
1920 s 43 1.72% 59 1920 s 13 0.36% 279
1930 s 225 8.94% 11 1930 s 27 0.74% 124
1940 s 17 0.67% 135 1940 s 15 0.41% 264
1950 s 4 0.16% 567 1950 s 13 0.36% 228
1960 s 5 0.20% 309 1960 s 20 0.55% 181
1970 s 11 0.43% 343 1970 s 23 0.63% 189
1980 s 24 0.94% 116 1980 s 21 0.57% 175
1990 s 11 0.44% 207 1990 s 30 0.83% 108
2000 s 22 1.25% 51 2000 s 17 0.66% 171

Total 427 Total 220

Average 1.58% 178 Average 0.57% 194
Average w/o 1930s 0.84% 194

Note:  A "3-Sigma Plus day" is one where the daily absolute return of Dow or the absolute deviation from normal temperature is greater than or equal to 3-sigmas.  
 

 
 

The clustering of 3σ+ days over the decades is illustrated in Figure 1.  The figure suggests several 
interesting observations.  First, there seems to be a considerable clustering of extreme-change days.  We note 
that the greatest clustering took place during the late 1920s and early 1930s, reflecting the boom and bust of the 
stock market and the depression that followed. Another clustering is apparent around the recession (depression) 
of economic activity in the late thirties and the uncertainty leading up to World War II.  The most recent 
clustering occurred during the late 1990s and early 2000s associated with the high-tech internet bubble, the 
busting of the bubble, and the recession of the early 2000s.  Note the existence of a few outliers of extremely 
large one-day declines in the stock market, of which the crash of October 19, 1987 stands out.  Finally, note that 
the picture of large positive and negative changes is generally symmetric, with the exception of the 
aforementioned highly unusual steep declines, and that there is no evidence of increasing volatility over time. 
Indeed, there have been large gaps of several years during which no three-sigma events occurred. 
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Figure 1: The Clustering of Extreme Movements in Stock Prices:
Daily Returns of  Dow Jones Index on Large-Move Days, 1900-2006
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We also gathered data on the daily temperature in New York’s Central Park2 for the years 1901 to 
2006.  We then defined the temperature’s daily ‘change’ as the percent deviation from the “normal” temperature 
for that day.  In calculating the daily normal temperature, we used the 106-year average for any given day.  Our 
sample consists of 38,655 observations of daily percent deviations from normal temperature.  The standard 
deviation (σ) for the sample of daily temperature changes is 1.46%.  We then defined an “extreme-move” day as 
one where the percent deviation in temperature exceeded three sigmas away from the mean.  As we did for the 
stock market, we call these 3σ+ days. 

 
Panel B of Table 1B contains data on the occurrence of and the duration between 3σ+ days for New 

York temperatures.  Comparisons of Panels A and B reveal some interesting differences and similarities.  
Unlike the Dow, extreme-move days for N.Y. temperature are more evenly distributed across the decades.  For 
the years 1901-2006, there were a total of 220 extreme movement days in temperature.  While temperature 
change extremes occurred only about half as often as extreme movements for the Dow, such movements are far 
more comparable if the 1930s are excluded for the Dow. For N.Y. temperature, the average duration in days 
between one 3σ+ day to the next is 194 days, which is higher than the 178 days figure for the Dow.  However, 
for the Dow, if one excludes the 1930s, the average duration between 3σ+ days becomes 194, exactly the same 
as the average duration between extreme value days for the N.Y. temperature. 
 
4. Duration Analysis 
 

In this section, we explore the factors that may explain the onset of an extreme-move day.  In particular, 
we examine whether extreme-value days – both for the Dow and the N.Y. temperature – are preceded and 
followed by larger-than-average changes.  We begin with a simple regression analysis of the time between 
extreme value days and then undertake a more formal duration analysis using the Cox Proportional model. 

 

                                                 
2 We procured this data set from Weather Source. 
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The key explanatory variables we consider are: (i) the average (of the absolute value of returns for the 
Dow and the percent deviations from normal for temperature) daily move in the three-day interval immediately 
preceding a 3σ+ day; (ii) the average daily move in the three-day interval immediately after a 3σ+ day; and (iii) 
the percentage change, in absolute terms, on a 3σ+ day.3  

 
The important statistics (mean and standard deviation) for these three variables are presented on Table 

2.  As a benchmark for comparison we also present the statistics for the absolute value of returns and the daily 
deviation for the entire sample of 26,884 observations for the Dow and 38,655 for the N.Y. temperature.  The 
first row of this table shows that the mean absolute value of the Dow’s daily returns is 0.743% for the entire 
sample and the standard deviation is 0.853%.  These figures differ from the ones presented in Table 1A because 
here we report the mean and standard deviation of the absolute value of the returns.  

 
The next three rows of Table 2 contain summary statistics on the three explanatory variables.  The 

mean and standard deviation for these three variables are based on 427 observations for Dow and 220 
observations for N.Y. temperature, which corresponds to the number of 3σ+ days for each. 

 
Comparison of the figures in the first row to the ones in rows two and three of Table 2 reveals that the 

average daily movement in the three-day interval preceding and following a 3σ+ day is markedly different from 
the typical daily movement.  For example, the average daily return in the three-days before a large-move days is 
2.11%, which is almost three times larger than the average daily return in the sample.  The same holds true for 
the average daily return during the three-day period after a 3σ+day.  The mean absolute return on all 3σ+ days 
is 4.96%, almost seven times larger than the average for all days.  This difference is to be expected because of 
the 427 days with 3σ+ returns, there are a sizeable number of days with returns as much as six or seven sigmas 
away from the mean.  

 
Table 2:  Descriptive Statistics For Extreme-Move Days for Stock Prices and NY Temperature

Dow Jones Daily Returns: 1900-2006

Mean
Standard 
Deviation Mean

Standard 
Deviation

Absolute Value of Daily Return/Daily Change 0.743% 0.853% 1.138% 0.909%
(N = 26,884) (N = 38,655)

Average Daily Move 3-days Before a 3 Sigma-Plus Day 2.105% 1.741% 2.563% 1.107%
Average Daily Move 3-days After a 3 Sigma-Plus Day 2.122% 1.602% 2.441% 1.102%
Average Daily Move on the Day of a 3-Sigma Plus Day 4.952% 2.166% 4.984% 0.556%

Number of observations 427 220

New York  Daily Average 
Temp's Deviation from 

Normal: 1901-2006

 
 
 

Turning now to the summary statistics on the explanatory variables for the N.Y. temperature, we find a 
remarkable similarity with the Dow’s moves.  The mean daily deviations in the three days before and after a 
3σ+ day is considerably larger (approximately 2 ½ times) than the average daily deviations from normal 
temperature for all days.  Interestingly, the means of the variable ‘daily move on the day of a 3σ+ day’, are 
virtually identical for the N.Y. temperature and the Dow; 4.98% and 4.95%, respectively. 

 
The summary statistics on Table 2 suggest that these variables will have some explanatory power to 

predict the onset of extreme-move days.  However, before undertaking a formal duration analysis, it may be 
useful to examine the time interval between 3σ+ days using a simple least squares regression.  The results of 
two least squares analysis, one for the Dow and the other for N.Y. temperature, are presented in Table 3.  The 

                                                 
3 We examine not only a three-day interval after a 3σ+ day, but also before to explore whether a large move day can be 
predicted by “pre-shocks”; by definition “after-shocks” cannot have any predictive power.  Later in this paper (see 
Section 5), we explicitly explore this predictive relationship by examining an asset allocation strategy. 
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dependent variable in each regression is ln (T), where T denotes the time interval in days from one extreme 
movement day to the next.  The explanatory variables are the ones discussed in the preceding paragraphs. 

 
 

 Table 3:  Least Squares Analysis of the Time Interval Between 3 Sigma-Plus Days

Dow Jones Daily Returns

Estimated 
Coefficient T-stat

Estimated 
Coefficient T-stat

Three-Days Before -54.87 -12.20 *** -123.73 -10.04 ***
Three-Days After -8.21 -1.64 5.21 0.41
The Day of -6.37 -1.77 -68.14 -2.65 ***
Intercept 3.72 19.54 *** 9.84 8.22 ***

Number of obs 427 220
Adjusted R-Squared 0.327 0.362

Note:  The dependent variable in each regression is the log of the duration in days between 3-sigma-plus days.  

Definitions:

For the Dow, the sigma is based on the standard deviation of daily log returns. 
For New York Temp, the sigma is based on the standard deviation of daily % deviation from normal (=106-year average) temperature.

The 3-Days Before (after): for the Dow, it is the average absolute return in the three days prior (after) to a 3-sigma-plus day; 
for NY temp, it is the average absolute % deviation three days prior (after).

The Day of:  For the Dow it is the absolute value of return, for NY Temp it is the absolute % deviation on a 3-sigma-plus day.

*** denotes statistically significant at 99% level of confidence.

New York  Daily Average 
Temp's Deviation from Normal

 
 
 
Qualitatively, the results for the Dow and the N.Y. temperature are very similar.  In both cases, the 

coefficient of the variable ‘average daily move 3-days before a 3σ+ day’ is negative and highly significant (with 
t-statistics exceeding 10), whereas the coefficient of the variable ‘average daily move 3-days after’ is not.  Thus, 
we find that extreme value days are preceded by, but not necessarily followed by, changes that are relatively 
large. 

 
The coefficient of the variable ‘daily move on a 3σ+ day’ is negative for both the Dow and the N.Y. 

temperature, but not significant at the 95% level for Dow.  The negative coefficient of this variable suggests that 
the magnitude of the change on a 3σ+ day is itself negatively correlated with the time interval between extreme-
move days. 

 
 

Duration Analysis Using the Cox Proportional Hazard Model 
 

In Table 4A, we present the results of the duration analysis using the Cox Proportional Hazard model.  
We use the semi-parametric Cox model rather than a parametric model such as the Weibull or logistic models 
because the Cox model does not impose a particular shape to the hazard function. 
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Table 4A:  Estimation of Time Between Extreme-Move Days Using the Cox Duration Model 

Dow Jones: 1900-2006 NY Temp: 1901-2006

Excluding the 1930s
Coeff-Est Z-stat Coeff-Est Z-stat Coeff-Est Z-stat

All 3-Sigma Plus Days

3-Days Before 32.74 13.25 *** 29.80 8.11 *** 45.60 6.69 ***
3-Days After 4.49 1.42 1.21 0.27 -2.03 -0.31
That Day 6.26 2.51 ** 7.27 2.09 ** 43.98 3.38 ***

Number of Obs 427 202 220

Only Positive 3-Sigma Plus Days

3-Days Before 89.38 9.97 *** 115.94 6.10 *** 36.46 3.76 ***
3-Days After 23.53 3.07 *** 15.98 1.13 9.48 1.06
That Day 10.72 2.50 ** 21.57 2.16 ** 47.19 2.08 **

Number of Obs 178 80 115

Only Negative 3-Sigma Plus Days

3-Days Before 46.35 9.84 *** 41.13 6.18 *** 45.75 4.48 ***
3-Days After 3.77 0.89 2.64 0.48 -6.34 -0.59
That Day 9.07 3.45 *** 10.98 3.25 *** 39.78 2.31 **

Number of Obs 249 122 105

Note:  See Table 3 for definition of the variables

*** denotes statistically significant at 99% level of confidence
** denotes statistically significant at 95% level of confidence  
 

In comparing the estimated coefficients of the explanatory variables in the least squares regression and 
the Cox model, one should note that the signs of the coefficients are expected to be positive rather than negative.  
Positive estimated coefficients imply that these variables shorten the duration, i.e., ‘hasten’ the arrival of the 
next 3σ+ day.  For example, consistent with the regression findings, the estimated coefficient of the variable 
‘average daily move 3-days before a 3σ+ day’ is positive and significant at the 99% confidence level in the Cox 
model both for the Dow and the N.Y. temperature.  Similarly, the estimated coefficient of the variable ‘daily 
move on a 3σ+ day’ is also positive and statistically significant, both for the Dow and the N.Y. temperature.  
However, the coefficient of the variable, ‘average daily move 3 days after a 3σ+ day’ is not statistically 
significant for both the Dow and the N.Y. temperature. 

 
For the Dow, we re-estimated the Cox model by excluding the 1930s (which leaves us with 202 

3σ+ days).  The results stay virtually unchanged: the signs and significance of the estimated coefficients are 
identical to those using the entire sample period 1990-2006. 

 
To explore Nelson’s (1991) observation that there is an asymmetry in the market’s response to “good 

news” and “bad news”, we next considered the two subsets – positive and negative 3σ+ days – separately.  In 
examining these subsets, we define the explanatory variables slightly differently than before.  For example, for 
the set of only positive 3σ+ days, the variable ‘average daily move 3-days before a 3σ+ day’ now measures the 
average of only the positive returns or temperature changes in the three-day intervals.  The converse applies to 
the explanatory variables for the analysis of negative 3σ+ days: the average of only the negative moves in the 
three-day intervals is measured. 
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The results are consistent across sub-samples.  The coefficients of the variables ‘average daily moves 
three days before’ and ‘the day of’ for both negative and positive 3σ+ days, remain statistically significant for 
the Dow (with and without the 1930s included) and for the N.Y. temperature.  Similarly, the coefficient of the 
variable ‘three day after’ is insignificant in all cases except for positive 3σ+ days for the Dow.  However, even 
in this case, the coefficient estimate becomes insignificant when the 1930s are excluded from the estimation. 

 
Although the estimation results for positive and negative 3σ+ days are qualitatively similar in term of 

the signs and significance of the estimated coefficients, there are some differences, particularly for the Dow.  
The coefficient of the variable ‘average daily move 3-days before’ is substantially larger for positive 3σ+ days 
than the negative ones for the Dow.  This result holds true even when one excludes the 1930s.  This implies that 
the positive returns in the three-day period before a positive 3σ+day ‘hasten’ the arrival of the next extreme, 
positive-move day much more than does the negative returns preceding a negative 3σ+ day.   

 
However, a similar asymmetry is not observed for positive and negative large-movement days in the 

N.Y. temperature.  In fact, the coefficient of the variable ‘average daily move three days before’ for the positive 
3σ+ days is slightly smaller than the coefficient of this variable for negative extreme-move days. 

 
Despite these minor dissimilarities, the nine sets of duration model results contained in Table 4A are 

remarkably consistent.  For both the Dow Jones and the N.Y. temperature, larger-than-average moves three 
days prior and on the day of a 3σ+ day ‘hasten’ the arrival of the next extreme-move day.   

 
 

Validation of the Robustness of Results 
 

We have undertaken a large number of variations of the Cox duration model to verify that our results 
are robust.  For example, (a) we have considered the average moves during different windows of time (e.g., 
three-day, five-day, seven-day windows) before and after a 3σ+day; (b) we have excluded various sub-periods, 
including the years 1928-35 for the Dow; (c) we have excluded observations where the difference between two 
consecutive trading days exceed four days as was the case during the World Wars or 9-11-2001 for the Dow; 
(d) we have excluded all observations with moves greater than or equal to 5-sigmas to examine the impact of 
outliers; (e) we have included a variety of dummy variables for decades, for months of the year, for periods of 
recession, etc. While we do not report the results of all these robustness checks here, they are available on 
request.  They confirm that the key findings of this paper are remarkably robust.  In Table 4b, however, we 
provide a few examples these robustness checks. 

 
As shown in this table, we re-estimated the duration model for the Dow with two sub-periods:  1900-

1950 and 1951-2006.  The daily σ for the first sub-period is a fair bit higher since it includes the 1930s:  1.34% 
versus 0.91%.  Despite this difference, the explanatory power of the model and the qualitative results across the 
two sub-periods are very similar.  The coefficient of the variable ‘average daily move 3-days before’ continues 
to be positive and statistically significant at the 99% level of confidence.   

 
In this table, we also report results when a dummy variable for recession quarters is included in the 

model.  The ‘recession’ dummy variable takes a value of one for all trading days in the quarters that the 
National Bureau of Economic Research4 has identified as being recessionary.  The recession dummy is not 
statistically significant in either sub-period, 1900-50 or 1951-06; and the sign and significance of the ‘three days 
before’ variable’s coefficient estimate remain unchanged. 

                                                 
4The NBER study can accessed electronically at www.nber.org/cycels.html.  
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Table 4B:  Results of Cox Duration Model Estimation: Pre and Post 1950s

Dow Jones: 1900-1950 (Sigma=1.334%)

Coeff-Est Z-stat Coeff-Est Z-stat

3-Days Before 38.18 10.11 *** 37.53 9.83 ***
3-Days After -2.60 -0.57 -3.25 -0.71
That Day 7.50 2.19 ** 7.41 2.18 **
Recession 0.19 1.26

Number of Obs 223 223

Dow Jones: 1951-2006 (Sigma=0.909%)

3-Days Before 28.07 6.40 *** 28.08 6.39 ***
3-Days After 6.92 1.10 6.91 1.10
That Day 0.59 0.11 0.61 0.11
Recession 0.01 0.05

Number of Obs 154 154

Note:  See Table 3 for definition of the variables

*** denotes statistically significant at 99% level of confidence
** denotes statistically significant at 95% level of confidence  

 
The remarkable consistency of the results – particularly the finding that extreme-move days are 

preceded by but not necessarily followed by periods of higher volatility – across two seemingly unrelated 
random phenomena, stock-market returns and temperature changes, seem to suggest the existence of a common 
stochastic process.  We do not propose such a process here.  We believe our findings simply lend further 
support to the arguments of financial economists and mathematicians who have contended that many complex 
random processes, including stock-market returns, cannot be explained by simplistic processes such as the 
random walk.  The challenge, however, lies in uncovering and formulating the stochastic processes that can be 
shown to possess a reliable degree of predictability.5 

 
 
5. Predictability and the Returns of a Portfolio Strategy 
 

In this section, we explore the predictive power of our duration-model results and examine whether 
they can be used to produce a useful market timing strategy.  In particular, we examine whether our model can 
be used to predict an extreme, negative-move day in the stock market where the investor could shift a 
portfolios’ asset allocation from stocks to cash.  Of the three explanatory variables used in the duration analysis, 
only one, ‘the average daily move three days before a 3σ+ day,’ has the potential to be used as a predictor, 
because the value of other explanatory variables is not known until after a large-move has already occurred. 

 

                                                 
5 In this context, the writings Benoit Mandelbrot, who has long argued for a fractal explanation of various disparate and 
diverse stochastic phenomena, deserve special attention.  In his latest book, “The Misbehavior of Markets: A Fractal 
View of Risk, Ruin, and Reward” he elaborates on his fractal view of various random phenomena, including the 
behavior of the financial markets. 
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Our proposed asset allocation strategies are based on our empirical finding that negative extreme-move 
days are typically preceded by days when equity returns are negative and unusually large in absolute value. 6  
Based on this finding, we use the following rules to construct asset-allocation strategies: 

 
(a) From the beginning of our sample period, the portfolio is 100 percent invested in the Dow index.  That 

is, the portfolio’s daily return is assumed to be the same as the Dow’s. 
(b)  If a day’s return is negative, and the average absolute value of the preceding three day’s negative 

returns exceeds a set threshold, then the portfolio is unwound and reinvested in cash. 
(c) The portfolio stays unwound for a set period of time over which the assets earn a rate of return 

equivalent to the risk-free rate. 
(d) After the set period of time, the investor is assumed to re-initiate a long position in the Dow index. 
(e) The portfolio incurs a fixed transaction cost, both for unwinding and re-initiating the portfolio. 

 
 
We define the ‘set threshold’ in (b) above, as the average of the absolute values of daily returns of all 

non-3σ days with a negative return in the entire sample.  We call this threshold the “trigger condition to 
unwind”.  We have considered various periods of time over which the portfolio remains unwound, including 2, 
3, 5, 7 and 10 days.  On each day in this interval during which the portfolio remains unwound it is assumed to 
earn the daily risk-free rate of 0.0103%. This is based on the average annual Treasury bill rate of 3.7% for the 
years 1926 through 2006.7   

 
As a measure for transaction cost, we have used 5 basis points each way – that is, the portfolio incurs a 

cost of 0.05% on the day it is unwound, and another 0.05% when it is re-initiated. We have used two sample 
periods in the portfolio analysis:  the entire sample of the 107 years, and the sub-sample comprising the years 
1936-2006.  The results of our analysis are presented on Table 5. 

 
Table 5: Performance Statistics for Alternative Trading Strategies Based on Extreme-Move Days

All data (1900-2006) 1936-2006 Only

Annual 
Mean 

Return (%)
Annual 

Sigma  (%)
Sharpe 
Ratio % Days

% of Negative 
3-Sigma-plus 
days avoided

Annual 
Mean 

Return (%)
Annual 

Sigma  (%)
Sharpe 
Ratio % Days

% of Negative 
3-Sigma-plus 
days avoided

Actual 7.01 21.46 0.15 9.45 17.76 0.32

Hypothetical Portfolio

Unwound period 2 days 6.59 16.85 0.17 12% 54% 7.42 14.57 0.26 12% 47%
Unwound period 3 days 7.63 16.05 0.25 16% 65% 7.04 14.03 0.24 16% 55%
Unwound period 5 days 8.62 14.66 0.34 22% 75% 7.53 12.94 0.30 23% 67%
Unwound period 7 days 8.42 13.61 0.35 28% 80% 7.45 11.98 0.31 29% 74%
Unwound period 10 days 8.28 12.53 0.37 34% 86% 7.07 11.03 0.31 36% 79%

Note: "% Days" is the percent of the trading days during which the portfolio remains invested in cash as opposed to being invested in Dow.
 

 
When the entire 107-year-period is considered, the portfolio is found to outperform the Dow’s actual 

annual average returns when the unwound period is at least two days. The percentage of all trading days during 
which the portfolio stays invested in cash varies from 12% to 34%, depending on the length of the unwound 
period.   
 

Two findings warrant special attention:  First, the portfolio strategy yields a considerably lower 
volatility of returns than the actual Dow.  While the annualized standard deviation for the actual Dow index is 
21.46%, the portfolio’s annual σ is almost 400 basis points lower at 16.85%.  Not unexpectedly, the portfolio’s 
σ diminishes considerably when the portfolio stays unwound for a longer period of time.  In this context, it is 
informative to consider the Sharpe ratio (where we divide the difference between the mean return and the risk-

                                                 
6To illustrate the point, consider one of the worst negative move days in Dow’s history, October 19th 1987, when the 
Dow fell by 27% (in log returns).  This day was preceded by fairly large negative move days: in the three days prior to 
this day, the Dow fell on average by 3.7% per day and cumulatively by nearly 11%. Yet, in the three day-period 
following October 19th 1987 the Dow’s moves were relatively uneventful. 
7 Ibbotson Associates, 2007 Yearbook, Chicago, IL. 
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free annual rate of 3.7% by the sigma of the return).  In all cases, the portfolio yields a higher Sharpe ratio than 
the actual Dow’s returns. In fact, for the unwound period of ten days, the Sharpe ratio for the portfolio (0.37) is 
more than twice as large as the actual Dow’s ratio (0.15). 

 
Secondly, our portfolio strategy, with a rather simple trigger condition for unwinding, seems to be 

fairly effective in avoiding negative 3σ+ days.  Even with an unwound period of only two days, the strategy 
avoids 54% of the negative 3σ+ days.  When the unwound period increases to 10 days, this percentage jumps to 
86%, implying that the trigger condition is fairly accurate in predicting the next negative extreme-move day.8     

 
In Table 5, we also report the results of the portfolio analysis using data only for the period 1936-2006.  

For this period, the Dow’s actual mean annualized return is 9.45% (as opposed to 7.01% for the entire period of 
1900-2006) and annualized sigma is 17.76% (as opposed to 21.46% for 1900-2006).  Now, however, the 
portfolio does not outperform the Dow.  In fact, at its best – when the unwound period is 5 days – the mean 
return is 7.53%, about 200 basis points worse than Dow’s actual performance.  It is not surprising that the asset-
allocation strategy has a more negative effect during the past 70 years.  The stock market has enjoyed a 
particularly strong long-term uptrend following the great depression and the buy-and-hold investor has 
generally benefited from being totally invested in all periods.  But the portfolio’s volatility (σ) continues to be 
substantially smaller than Dow’s actual volatility.  Even with a two-day unwound period, the portfolio’s 
annualized σ is 14.57% more than 250 basis points lower than Dow’s. The portfolio’s Sharpe ratio is roughly 
comparable to the actual Dow’s when the unwound period is 5 days or longer. 

 
The percentage of trading days affected by the portfolio strategy is virtually identical regardless of 

which period is considered, all 107 years or the last 70 years.  However, that is not the case for the number of 
negative 3σ+ days avoided.  Consistent with the finding of lower returns for the sub-period 1936-2006, we find 
that the percentage of avoided negative 3σ+ days is slightly smaller as well.  With a two-day unwound period, 
this percentage is 47%, which rises to 79% when a ten-day unwound period is applied. 

 
While there is strong empirical evidence of a relationship between an extreme-move day and its 

preceding three-day’s average return, we find that this relationship is not predicable enough to devise a 
dependable asset-allocation (market-timing) strategy to outperform the market.  However, if the objective of the 
trading strategy is to reduce the portfolio’s volatility, then the strategy seems to be reasonably effective:  from 
50% to 80% of the negative extreme-move days are avoided by adopting the strategy suggested by our duration 
model results. 
 
6. Concluding Comments 
 

There has been considerable empirical work confirming that stock returns are not normally distributed.  
Moreover, we know that stock prices do not follow a strict random-walk process and may, to some extent, be 
predicable.  The paper has examined the temporal properties of the “fat tails” of the stock-return distributions.  
We found that there has been a clustering of days when the stock market has been subject to “extreme 
movements,” which we define as daily stock returns that are three or more standard deviations away from the 
mean return.  Moreover, a similar clustering of extreme movements is shown to exist in the daily time series of 
temperatures recorded in New York City. 

 
Utilizing a duration model we found that extreme movements can, to some extent, be predicted on the 

basis of unusually large movements in preceding periods.  One particularly robust finding is that extreme 
movements in stock prices are usually preceded by large average daily movements during the preceding three 
trading days.  A similar finding was reported for daily N.Y. City temperatures. 

 
The strong results suggest that it may be possible to fashion an asset-allocation strategy, whereby the 

investor would switch from stocks to cash in advance of predicted extreme negative returns in the stock market.  
We found, however, that it was not possible to use the predictability that exists to improve an investor’s long-
                                                 
8 The reason that returns are not improved considerably even though so many negative days are avoided is that many 
extreme positive days are eliminated as well.  As is well known, a substantial part of the generous returns earned by 
long-run equity investors comes from the infrequent number of days when the market rallies sharply. 



The Clustering of Extreme Movements: Stock Prices and the Weather 

 14

run return over the return that would be earned by the buy-and-hold investor who simply stayed fully invested 
in the stock market.  The market-timing strategy that we simulated was, however, useful in reducing the 
volatility of returns.  Because the timing strategy does permit the investor to avoid between half and more than 
three quarters of the trading days in which the market suffers substantial declines, the suggested strategy does 
substantially lower the volatility of the portfolio’s returns over time. 

We have shown that a duration model analysis can shed considerable light on the factors that are 
associated with unusually large changes in the stock market and the weather.  The task for the future is to better 
understand the underlying stochastic processes common to many random phenomena. 
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