
Lecture 2
ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 1 / 70

Models of Continuous Time Signals

Today’s topics:

Signals
I Sinuoidal signals
I Exponential signals
I Complex exponential signals
I Unit step and unit ramp
I Impulse functions

Systems
I Memory
I Invertibility
I Causality
I Stability
I Time invariance
I Linearity
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Sinusoidal Signals

A sinusoidal signal is of the form

x(t) = cos(ωt + θ).

where the radian frequency is ω, which has the units of radians/s.
Also very commonly written as

x(t) = A cos(2πft + θ).

where f is the frequency in Hertz.
We will often refer to ω as the frequency, but it must be kept in mind
that it is really the radian frequency, and the frequency is actually f .
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The period of the sinuoid is

T =
1

f
=

2π

ω

with the units of seconds.

The phase or phase angle of the signal is θ, given in radians.

tT 2T-2T -T 0

cos(ωt)

T 2T-2T -T 0
t

cos(ωt−θ)
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Complex Sinusoids

The Euler relation defines e jφ = cosφ+ j sinφ.

A complex sinusoid is

Ae j(ωt+θ) = A cos(ωt + θ) + jA sin(ωt + θ).

T 2T-2T -T 0

e jωt

Real sinusoid can be represented as the real part of a complex sinusoid

<{Ae j(ωt+θ)} = A cos(ωt + θ)
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Exponential Signals

An exponential signal is given by

x(t) = eσt

If σ < 0 this is exponential decay.

If σ > 0 this is exponential growth.

-2 -1 0 1 2
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e−t
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Damped or Growing Sinusoids

A damped or growing sinusoid is given by

x(t) = eσt cos(ωt + θ)

Exponential growth (σ > 0) or decay (σ < 0), modulated by a
sinusoid.

t0 T 2T-T-2T

σ< 0
eσt cos(ωt)

σ> 0

t0 T 2T-T-2T

eσt cos(ωt)
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Complex Exponential Signals

A complex exponential signal is given by

e(σ+jω)t+jθ = eσt(cos(ωt + θ) + i sin(ωt + θ))

A exponential growth or decay, modulated by a complex sinusoid.

Includes all of the previous signals as special cases.

t0 T 2T-T-2T

σ< 0
e(σ+ jω)t

σ> 0

t0 T 2T-T-2T

e(σ+ jω)t
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Complex Plane

Each complex frequency s = σ + jω corresponds to a position in the
complex plane.

Left Half Plane Right Half Plane

σ

σ< 0 σ> 0

jω

Decreasing
Signals

Increasing
Signals
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Demonstration

Take a look at complex exponentials in 3-dimensions by using
“TheComplexExponential” at demonstrations.wolfram.com
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Unit Step Functions

The unit step function u(t) is defined as

u(t) =

{
1, t ≥ 0
0, t < 0

Also known as the Heaviside step function.

Alternate definitions of value exactly at zero, such as 1/2.

1

t

u(t)

t1 2−1 0−2
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Uses for the unit step:

Extracting part of another signal. For example, the piecewise-defined
signal

x(t) =

{
e−t , t ≥ 0

0, t < 0

can be written as
x(t) = u(t)e−t

-2 -1 0 1 2
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2

t

e−t

-2 -1 0 1 2

1

2

t

u(t)e−t
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Combinations of unit steps to create other signals. The offset
rectangular signal

x(t) =


0, t ≥ 1
1, 0 ≤ t < 1
0, t < 0

can be written as
x(t) = u(t)− u(t − 1).

1

t

u(t)

1 2−1 0

1

t

u(t−1)

1 2−1 0

1

t

u(t)−u(t−1)

1 2−1 0
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Unit Rectangle

Unit rectangle signal:

rect(t) =

{
1 if |t| ≤ 1/2
0 otherwise.

-1/2 1/20

1

t

rect(t)
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Unit Ramp

The unit ramp is defined as

r(t) =

{
t, t ≥ 0
0, t < 0

The unit ramp is the integral of the unit step,

r(t) =

∫ t

−∞
u(τ)dτ

1

tt1 2−1 0−2

2 r(t)
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Unit Triangle

Unit Triangle Signal

∆(t) =

{
1− |t| if |t| < 1
0 otherwise.

-1 10

1

t

Δ(t)
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More Complex Signals

Many more interesting signals can be made up by combining these
elements.

Example: Pulsed Doppler RF Waveform (we’ll talk about this later!)

T 2T-2T -T 0

cos(ωt)τ

0
A

−A

RF cosine gated on for τ µs, repeated every T µs, for a total of N pulses.
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Start with a simple rect(t) pulse

−1 10−1/2 1/2

rect(t)1

Scale to the correct duration and amplitude for one subpulse

A rect(t/τ)

T 2T-2T -T 0

A

Combine shifted replicas

T 2T-2T -T 0

A

2

∑
n=−2

A rect((t−nT )/τ)

This is the envelope of the signal.
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Then multiply by the RF carrier, shown below

T 2T-2T -T 0

0

cos(ωt)
1

−1

to produce the pulsed Doppler waveform

T 2T-2T -T 0

0
A

−A

2

∑
n=−2

A rect((t−nT )/τ)cos(ωt)
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Impulsive signals

(Dirac’s) delta function or impulse δ is an idealization of a signal that

is very large near t = 0
is very small away from t = 0
has integral 1

for example:

t

ε
1/ε

t

1/ε

2ε

the exact shape of the function doesn’t matter
ε is small (which depends on context)
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On plots δ is shown as a solid arrow:

t

δ(t)

1−1 0

t

t+1+δ(t)

1−1 0
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“Delta function” is not a function
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Formal properties

Formally we define δ by the property that∫ ∞
−∞

f (t)δ(t) dt = f (0)

provided f is continuous at t = 0

idea: δ acts over a time interval very small, over which f (t) ≈ f (0)

δ(t) is not really defined for any t, only its behavior in an integral.
Conceptually δ(t) = 0 for t 6= 0, infinite at t = 0, but this doesn’t
make sense mathematically.
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Example: Model δ(t) as

gn(t) = n rect(nt)

as n→∞. This has an area (n)(1/n) = 1. If f (t) is continuous at t = 0,
then∫ ∞
−∞

f (t)δ(t) dt = lim
n→∞

∫ ∞
−∞

f (t)gn(t) dt = f (0)

∫ ∞
−∞

gn(t) dt = f (0)

t

gn(t)

g1(t)

0 1

ε1
ε g2(t)

−1

t

f (t)
gn(t)

f (0)

0 1−1
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Scaled impulses

αδ(t) is an impulse at time T , with magnitude or strength α

We have ∫ ∞
−∞

αδ(t)f (t) dt = αf (0)

provided f is continuous at 0

On plots: write area next to the arrow, e.g., for 2δ(t),

PSfrag replacements

t
0

2
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Multiplication of a Function by an Impulse

Consider a function φ(x) multiplied by an impulse δ(t),

φ(t)δ(t)

If φ(t) is continuous at t = 0, can this be simplified?

Substitute into the formal definition with a continuous f (t) and
evaluate, ∫ ∞

−∞
f (t) [φ(t)δ(t)] dt =

∫ ∞
−∞

[f (t)φ(t)] δ(t) dt

= f (0)φ(0)

Hence
φ(t)δ(t) = φ(0)δ(t)

is a scaled impulse, with strength φ(0).
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Sifting property

The signal x(t) = δ(t − T ) is an impulse function with impulse at
t = T .

For f continuous at t = T ,∫ ∞
−∞

f (t)δ(t − T ) dt = f (T )

Multiplying by a function f (t) by an impulse at time T and
integrating, extracts the value of f (T ).

This will be important in modeling sampling later in the course.
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Limits of Integration

The integral of a δ is non-zero only if it is in the integration interval:

If a < 0 and b > 0 then ∫ b

a
δ(t) dt = 1

because the δ is within the limits.

If a > 0 or b < 0, and a < b then∫ b

a
δ(t) dt = 0

because the δ is outside the integration interval.

Ambiguous if a = 0 or b = 0
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Our convention: to avoid confusion we use limits such as a− or b+ to
denote whether we include the impulse or not.

∫ 1

0+
δ(t) dt = 0,

∫ 1

0−
δ(t) dt = 1,

∫ 0−

−1
δ(t) dt = 0,

∫ 0+

−1
δ(t) dt = 1

example:∫ 3

−2
f (t)(2 + δ(t + 1)− 3δ(t − 1) + 2δ(t + 3)) dt

= 2

∫ 3

−2
f (t) dt +

∫ 3

−2
f (t)δ(t + 1) dt − 3

∫ 3

−2
f (t)δ(t − 1) dt

+ 2

∫ 3

−2
f (t)δ(t + 3)) dt

= 2

∫ 3

−2
f (t) dt + f (−1)− 3f (1)
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Physical interpretation

Impulse functions are used to model physical signals

that act over short time intervals

whose effect depends on integral of signal

example: hammer blow, or bat hitting ball, at t = 2

force f acts on mass m between t = 1.999 sec and t = 2.001 sec∫ 2.001
1.999 f (t) dt = I (mechanical impulse, N · sec)

blow induces change in velocity of

v(2.001)− v(1.999) =
1

m

∫ 2.001

1.999
f (τ) dτ = I/m

For most applications, model force as impulse at t = 2, with magnitude I .
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example: rapid charging of capacitor

+−
+
−

i t = 0

1 V 1 F v(t)

assuming v(0) = 0, what is v(t), i(t) for t > 0?

i(t) is very large, for a very short time

a unit charge is transferred to the capacitor ‘almost instantaneously’

v(t) increases to v(t) = 1 ‘almost instantaneously’

To calculate i , v , we need a more detailed model.
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For example, assume the current delivered by the source is limited: if
v(t) < 1, the source acts as a current source i(t) = Imax

+
−

i

1 F v(t)IMAX

i(t) =
dv(t)

dt
= Imax, v(0) = 0

0

1

t

v(t)

0
t

IMAX
i(t)

As Imax →∞, i approaches an impulse, v approaches a unit step
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In conclusion,

large current i acts over very short time between t = 0 and ε

total charge transfer is

∫ ε

0
i(t) dt = 1

resulting change in v(t) is v(ε)− v(0) = 1
can approximate i as impulse at t = 0 with magnitude 1

Modeling current as impulse

obscures details of current signal
obscures details of voltage change during the rapid charging
preserves total change in charge, voltage
is reasonable model for time scales � ε

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 33 / 70

Integrals of impulsive functions

Integral of a function with impulses has jump at each impulse, equal to the
magnitude of impulse

example: x(t) = 1 + δ(t − 1)− 2δ(t − 2); define y(t) =

∫ t

0
x(τ) dτ

0

1

t1 2

2 1

-2

x(t)

0

1

t1 2

2
y(t)
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Derivatives of discontinuous functions

Conversely, derivative of function with discontinuities has impulse at each
jump in function

Derivative of unit step function u(t) is δ(t)
Signal y of previous page

y ′(t) = 1 + δ(t − 1)− 2δ(t − 2)

0

1

t1 2

2
y(t)

0

1

t1 2

2 1

-2

x(t)
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Derivatives of impulse functions

Integration by parts suggests we define∫ ∞
−∞

δ′(t)f (t) dt = δ(t)f (t)

∣∣∣∣∞
−∞
−
∫ ∞
−∞

δ(t)f ′(t) dt = −f ′(0)

provided f ′ continuous at t = 0

δ′ is called doublet
δ′, δ′′, etc. are called higher-order impulses
Similar rules for higher-order impulses:∫ ∞

−∞
δ(k)(t)f (t) dt = (−1)k f (k)(0)

if f (k) continuous at t = 0
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interpretation of doublet δ′: take two impulses with magnitude ±1/ε, a
distance ε apart, and let ε→ 0

t = 0
t = ε

1/ε

−1/ε

Then ∫ ∞
−∞

f (t)

(
δ(t)

ε
− δ(t − ε)

ε

)
dt =

f (0)− f (ε)

ε

converges to −f ′(0) if ε→ 0
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Caveat

δ(t) is not a signal or function in the ordinary sense, it only makes
mathematical sense when inside an integral sign

We manipulate impulsive functions as if they were real functions,
which they aren’t

It is safe to use impulsive functions in expressions like∫ ∞
−∞

f (t)δ(t − T ) dt,

∫ ∞
−∞

f (t)δ′(t − T ) dt

provided f (resp, f ′) is continuous at t = T .

Some innocent looking expressions don’t make any sense at all (e.g.,
δ(t)2 or δ(t2))
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Break

Talk about Office hours and coming to the first lab.
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Systems

A system transforms input signals into output signals.

A system is a function mapping input signals into output signals.

We will concentrate on systems with one input and one output i.e.
single-input, single-output (SISO) systems.

Notation:

◦ y = Sx or y = S(x), meaning the system S acts on an input signal x
to produce output signal y .

◦ y = Sx does not (in general) mean multiplication!
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Block diagrams

Systems often denoted by block diagram:

x y
S

Lines with arrows denote signals (not wires).

Boxes denote systems; arrows show inputs & outputs.

Special symbols for some systems.
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Examples

(with input signal x and output signal y)

Scaling system: y(t) = ax(t)

Called an amplifier if |a| > 1.
Called an attenuator if |a| < 1.
Called inverting if a < 0.
a is called the gain or scale factor.
Sometimes denoted by triangle or circle in block diagram:

a
x y

a
x y

a
x y
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Differentiator: y(t) = x ′(t)

x yd

dt

Integrator: y(t) =

∫ t

a
x(τ) dτ (a is often 0 or −∞)

Common notation for integrator:

Zx y
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time shift system: y(t) = x(t − T )
called a delay system if T > 0
called a predictor system if T < 0
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convolution system:

y(t) =

∫
x(t − τ)h(τ) dτ,

where h is a given function (you’ll be hearing much more about this!)
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Examples with multiple inputs

Inputs x1(t), x2(t), and Output y(t))

summing system: y(t) = x1(t) + x2(t)
+

yx1

x2

difference system: y(t) = x1(t)− x2(t)
+

+

−
yx1

x2

multiplier system: y(t) = x1(t)x2(t)
+ yx1

x2
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Interconnection of Systems

We can interconnect systems to form new systems,

cascade (or series): y = G (F (x)) = GFx

GF
x y

(note that block diagrams and algebra are reversed)
sum (or parallel): y = Fx + Gx

G

F
+x y
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feedback: y = F (x − Gy)

G

F+
+

-

x y

In general,

Block diagrams are a symbolic way to describe a connection of
systems.
We can just as well write out the equations relating the signals.
We can go back and forth between the system block diagram and the
system equations.
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Example: Integrator with feedback

+
+

-

Z

a

x y

Input to integrator is x − ay , so∫ t

(x(τ)− ay(τ)) dτ = y(t)

Another useful method: the input to an integrator is the derivative of its
output, so we have

x − ay = y ′

(of course, same as above)

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 49 / 70

Linearity

A system F is linear if the following two properties hold:

1 homogeneity: if x is any signal and a is any scalar,

F (ax) = aF (x)

2 superposition: if x and x̃ are any two signals,

F (x + x̃) = F (x) + F (x̃)

In words, linearity means:

Scaling before or after the system is the same.
Summing before or after the system is the same.
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Linearity means the following pairs of block diagrams are equivalent, i.e.,
have the same output for any input(s)

a F yx

aF yx

+ F y
x1

x2

F
+

F

y
x2

x1

Examples of linear systems: scaling system, differentiator, integrator,
running average, time shift, convolution, modulator, sampler.

Examples of nonlinear systems: sign detector, multiplier (sometimes),
comparator, quantizer, adaptive filter
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Multiplier as a modulator, y(t) = x(t) cos(2πft), is linear.

+ yx

cos(2π f t)

Multiplier as a squaring system, y(t) = x2(t) is nonlinear.

+ yx
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System Memory

A system is memoryless if the output depends only on the present
input.

I Ideal amplifier
I Ideal gear, transmission, or lever in a mechanical system

A system with memory has an output signal that depends on inputs
in the past or future.

I Energy storage circuit elements such as capacitors and inductors
I Springs or moving masses in mechanical systems

A causal system has an output that depends only on past or present
inputs.

I Any real physical circuit, or mechanical system.
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Time-Invariance

A system is time-invariant if a time shift in the input produces the
same time shift in the output.

For a system F ,
y(t) = Fx(t)

implies that
y(t − τ) = Fx(t − τ)

for any time shift τ .
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Implies that delay and the system F commute. These block diagrams
are equivalent:

F
x y

Delay by τ

F
x y

Delay by τ

Time invariance is an important system property. It greatly simplifies
the analysis of systems.
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System Stability

Stability important for most engineering applications.

Many definitions

If a bounded input
|x(t)| ≤ Mx <∞

always results in a bounded output

|y(t)| ≤ My <∞,

where Mx and My are finite positive numbers, the system is Bounded
Input Bounded Output (BIBO) stable.
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Example: Cruise control, from introduction,

gas
requested
speed ++ -

error
k H

speed

Car

ex y

The output y is
y = H(k(x − y))

We’ll see later that this system can become unstable if k is too large
(depending on H)

Positive error adds gas
Delay car velocity change, speed overshoots
Negative error cuts gas off
Delay in velocity change, speed undershoots
Repeat!
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System Invertibility

A system is invertible if the input signal can be recovered from the
output signal.

If F is an invertible system, and

y = Fx

then there is an inverse system F INV such that

x = F INV y = F INV Fx

so F INV F = I , the identity operator.

F
x y

FINV x
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Example: Multipath echo cancelation

Direct Path

Reflected Path

Transmitter Receiver

x(t) y(t)

x(t)

Input

y(t)

Output

Important problem in communications, radar, radio, cell phones.
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Generally there will be multiple echoes.

Multipath can be described by a system y = Fx

If we transmit an impulse, we receive multiple delayed impulses.

One transmitted message gives multiple overlapping messages

We want to find a system F INV that takes the multipath corrupted signal
y and recovers x

F INV y = F INV (Fx)

= (F INV F ) x

= x

Often possible if we allow a delay in the output.
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Example: AM Radio Transmitter and receiver

×m(t)

cos(ωct)

h(t)Propagation

Transmitter Receiver

2
+ | · | A+m(t)

A

[A+m(t)]cos(ωct)

Multiple input systems

Linear and non-linear systems
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Systems Described by Differential Equations

Many systems are described by a linear constant coefficient ordinary
differential equation (LCCODE):

any (n)(t) + · · ·+ a1y ′(t) + a0y(t) = bmx (m)(t) + · · ·+ b1x ′(t) + b0x(t)

with given initial conditions

y (n−1)(0), . . . , y ′(0), y(0)

(which fixes y(t), given x(t))

n is called the order of the system
b0, . . . , bm, a0, . . . , an are the coefficients of the system
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This is important because LCCODE systems are linear when initial
conditions are all zero.

Many systems can be described this way

If we can describe a system this way, we know it is linear

Note that an LCCODE gives an implicit description of a system.

It describes how x(t), y(t), and their derivatives interrelate

It doesn’t give you an explicit solution for y(t) in terms of x(t)

Soon we’ll be able to explicitly express y(t) in terms of x(t)
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Examples

Simple examples

scaling system (a0 = 1, b0 = a)

y = ax

integrator (a1 = 1, b0 = 1)

y ′ = x

differentiator (a0 = 1, b1 = 1)

y = x ′

integrator with feedback (a few slides back, a1 = 1, a0 = a, b0 = 1)

y ′ + ay = x
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2nd Order Circuit Example

+−

L R

C y(t)
+
−

i

x(t)

By Kirchoff’s voltage law

x − Li ′ − Ri − y = 0

Using i = Cy ′,
x − LCy ′′ − RCy ′ − y = 0

or
LCy ′′ + RCy ′ + y = x

which is an LCCODE. This is a linear system.
Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 65 / 70

Mechanical System

ym

bk

x

Mass (car body)

Damper 
(Shock Absorbers)Springs 

Input
(Road) 

Output
(car height) 

This can represent suspension system, or building during earthquake, . . .
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y

m

bk

x

x(t) is displacement of base; y(t) is displacement of mass

spring force is k(x − y); damping force is b(x − y)′

Newton’s equation is my ′′ = b(x − y)′ + k(x − y)

Rewrite as second-order LCCODE

my ′′ + by ′ + ky = bx ′ + kx

This is a linear system.
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Discrete-Time Systems

Many of the same block diagram elements

Scaling and delay blocks common

The system equations are difference equations

a0y [n] + a1y [n − 1] + . . . = b0x [n] + b1x [n − 1] + . . .

where x [n] is the input, and y [n] is the output.
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Discrete-Time System Example

++

-

a

Delay by T
x[n] y[n]

The input into the delay is

e[n] = x [n]− ay [n]

The output is y [n] = e[n − 1], so

y [n] = x [n − 1]− ay [n − 1].
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Questions

Are these systems linear? Time invariant?

y(t) =
√

x(t)

y(t) = x(t)z(t), where z(t) is a known function

y(t) = x(at)

y(t) = 0

y(t) = x(T − t)

A linear system F has an inverse system F inv . Is F inv linear?
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