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Models of Continuous Time Signals

Today's topics:

o Signals
» Sinuoidal signals
> Exponential signals
» Complex exponential signals
» Unit step and unit ramp
» Impulse functions

o Systems
> Memory
> Invertibility
» Causality
> Stability
> Time invariance
> Linearity
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Sinusoidal Signals

@ A sinusoidal signal is of the form
x(t) = cos(wt + ).

where the radian frequency is w, which has the units of radians/s.
@ Also very commonly written as

x(t) = Acos(2rft + 6).
where f is the frequency in Hertz.

o We will often refer to w as the frequency, but it must be kept in mind
that it is really the radian frequency, and the frequency is actually f.
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@ The period of the sinuoid is

1
T=12
f w

with the units of seconds.
@ The phase or phase angle of the signal is 6, given in radians.

cos(wr —0)

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 4/70



Complex Sinusoids

@ The Euler relation defines e/ = cos ¢ + jsin ¢.

@ A complex sinusoid is

AW — Acos(wt + 0) + jAsin(wt + 0).

@ Real sinusoid can be represented as the real part of a complex sinusoid

R{ASWH0)) = Acos(wt + 0)
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Exponential Signals

@ An exponential signal is given by
x(t) = et

o If o < 0 this is exponential decay.

o If o > 0 this is exponential growth.

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 6 /70



Damped or Growing Sinusoids

@ A damped or growing sinusoid is given by
x(t) = et cos(wt + 0)

@ Exponential growth (o > 0) or decay (o < 0), modulated by a
sinusoid.

e cos(wt)
>0

e cos(wt)
o<0
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Complex Exponential Signals

@ A complex exponential signal is given by
lTHWHO — o7t (cos(wt + ) + i sin(wt + 6))

@ A exponential growth or decay, modulated by a complex sinusoid.

@ Includes all of the previous signals as special cases.

o jw)t o+ jo)t

el
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Complex Plane

complex plane.

Each complex frequency s = o + jw corresponds to a position in the

Left Half Plane
o<0

Decreasing
Signals

Cuff (Lectu

Demonstration

ELE 301: Signals and Systems

Take a look at complex exponentials in 3-dimensions by using
“TheComplexExponential” at demonstrations.wolfram.com
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Unit Step Functions

@ The unit step function u(t) is defined as

1, t>0
“(t):{ 0, t<0

@ Also known as the Heaviside step function.
o Alternate definitions of value exactly at zero, such as 1/2.

1
ut)
; } J }
“2 1 0 1 21
Ral2oiii2 1170

Uses for the unit step:

o Extracting part of another signal. For example, the piecewise-defined

signal
et t>0
X(t)_{ 0, t<0

can be written as

2
4 u(t)e™
3 1 0 i 2
t B ) t
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o Combinations of unit steps to create other signals. The offset
rectangular signal

0, t>1
x(t)=4¢ 1, 0<t<1
0, t<0

can be written as

e 1 1
u(t) —u(t—1)
u(t) ut—1)
1 o 1 2t T o 27 1 o1 21
Railzonsz  13/70

Unit Rectangle

Unit rectangle signal:

(1 il <1)2
rect(t) = { 0 otherwise.
1
rect(r)
-1/2 0 1/2 t
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Unit Ramp
@ The unit ramp is defined as
t, t>0
() = { 0, t<0
@ The unit ramp is the integral of the unit step,

r(t) = /; u(t)dT

2 r(r)
1
2 1 lo 1 2t
R0tz 15 /70

Unit Triangle

Unit Triangle Signal
{ 1—]t| iflt <1

Alt)= 0 otherwise.

Fall 2011-12 16 / 70
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More Complex Signals

Many more interesting signals can be made up by combining these
elements.

Example: Pulsed Doppler RF Waveform (we'll talk about this later!)

T cos(wr)
A e "
I
—A 1 1 | 1 1
2T T 0 T 2T

RF cosine gated on for 7 us, repeated every T us, for a total of N pulses.
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Start with a simple rect(t) pulse

1

‘ [ ]

1 —1/2 0 12 1

rect(t)

Scale to the correct duration and amplitude for one subpulse

r_h Arect(t/7)

2T -T 0 T

2T

Combine shifted replicas

N iZA rect((t —nT)/x)
o T

2T -T 0 T 2T

This is the envelope of the signal.
Cuff (Lecture 2)

ELE 301: Signals and Systems Fall 2011-12

17 /70

18 /70



Then multiply by the RF carrier, shown below

to produce the pulsed Doppler waveform

é Arect((r —nT) /) cos(wt)

B
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Impulsive signals

19 /70

(Dirac’s) delta function or impulse ¢ is an idealization of a signal that

is very large near t =0
is very small away from t =0
@ has integral 1

for example:

1/

2¢ t

@ the exact shape of the function doesn't matter
@ cis small ?Whlch depends on context
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On plots § is shown as a solid arrow:

Cuff (Lecture 2)

ELE 301: Signals and Systems
“Delta function” is not a function
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Formal properties

Formally we define § by the property that

/ ~ F(0)5(8) dt = £(0)

provided f is continuous at t =0

idea: J acts over a time interval very small, over which f(t) = f(0)

@ §(t) is not really defined for any t, only its behavior in an integral.
o Conceptually §(t) = 0 for t # 0, infinite at t = 0, but this doesn’t
make sense mathematically.
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Example: Model §(t) as

gn(t) = nrect(nt)
as n — oo. This has an area (n)(1/n) = 1. If f(t) is continuous at t =0,
then

/Do f(t)o(t) dt = nIer;o /jo f(t)gn(t) dt = f(o)/m gn(t) dt = f(0)

oo —00

7 (1)
VoL
€ 82(1)
| =@ 4
~1 0 1
Men(t)
/\ y\
I 70
!
_1 1
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Scaled impulses

ad(t) is an impulse at time T, with magnitude or strength «
We have

00
/ ad(t)f(t) dt = af(0)

o0

provided f is continuous at 0
On plots: write area next to the arrow, e.g., for 26(t),

2
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Multiplication of a Function by an Impulse

o Consider a function ¢(x) multiplied by an impulse §(t),

P(£)a(t)

If ¢(t) is continuous at t = 0, can this be simplified?

@ Substitute into the formal definition with a continuous 7(t) and
evaluate,

£(0)$(0)

[ rompwsen a = [~ el

@ Hence
o(1)o(t) = ¢(0)o(t)

is a scaled impulse, with strength ¢(0).

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 26 /70



Sifting property

o The signal x(t) = §(t — T) is an impulse function with impulse at
t=T.

@ For f continuous at t =

/ f(t (t—=T)dt=1(T)

o Multiplying by a function f(t) by an impulse at time T and
integrating, extracts the value of f(T).

This will be important in modeling sampling later in the course.
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Limits of Integration

The integral of a d is non-zero only if it is in the integration interval:

/abé(t) dt =

because the 4 is within the limits.

e If a<0and b>0 then

elfa>0o0rb<0, and a< b then

/abé(t) dt =

because the 0 is outside the integration interval.

@ Ambiguous if a=0o0r b=0
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Our convention: to avoid confusion we use limits such as a— or b+ to
denote whether we include the impulse or not.

"1 0— 0+
0+5(t /(5t)dt—1 /_1 o(t) dt =0, /_1 o(t) dt =

example:

/3 F(E)2+ 8(t + 1) — 30(t — 1) + 26(t + 3)) dt

3 3 3
2/_2 £(t) dt+/_2 F(1)5(t + 1) dt73/_2 F(1)5(t — 1) dt
3
+2/72 f(t)o(t +3)) dt

3
212 f(t) dt + f(—1) — 3f(1)
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Physical interpretation

Impulse functions are used to model physical signals
o that act over short time intervals
@ whose effect depends on integral of signal

example: hammer blow, or bat hitting ball, at t =2

o force f acts on mass m between t = 1.999 sec and t = 2.001 sec
° 12_'909091 f(t) dt = I (mechanical impulse, N - sec)

@ blow induces change in velocity of
1 2001
v(2.001) — v(1.999) = 7/ f(r)ydr=1/m
m J1.999

For most applications, model force as impulse at t = 2, with magnitude /.
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example: rapid charging of capacitor

1V 1F

assuming v(0) = 0, what is v(t), i(t) for t > 0?
o i(t) is very large, for a very short time
@ a unit charge is transferred to the capacitor ‘almost instantaneously’

@ v(t) increases to v(t) = 1 ‘almost instantaneously’

To calculate 7, v, we need a more detailed model.
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For example, assume the current delivered by the source is limited: if
v(t) < 1, the source acts as a current source i(t) = hpax

i

Inax q} 1F v(t)

i(t) = dz(:) — s V(0) =0

; v(t Iyax
i(t)
0 0
t t

As Inax — 00, i approaches an impulse, v approaches a unit step
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In conclusion,
@ large current i acts over very short time between t =0 and €
€
o total charge transferis [ i(t)dt=1

0
@ resulting change in v(t) is v(e) — v(0) =1
@ can approximate i as impulse at t = 0 with magnitude 1

Modeling current as impulse

@ obscures details of current signal

@ obscures details of voltage change during the rapid charging
@ preserves total change in charge, voltage

@ is reasonable model for time scales > ¢
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Integrals of impulsive functions

Integral of a function with impulses has jump at each impulse, equal to the
magnitude of impulse

example: x(t) =14 d(t — 1) — 26(t — 2); define y(t) = /Otx(r) dr

. x(0) ¥(t)
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Derivatives of discontinuous functions

Conversely, derivative of function with discontinuities has impulse at each
jump in function

@ Derivative of unit step function u(t) is d(t)
@ Signal y of previous page

y(t)=1+6(t—1)—25(t—2)
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Derivatives of impulse functions

Integration by parts suggests we define
/ & (t)f(t) dt = 6(t)f(t)‘ —/ 5(t)f'(t) dt = —f'(0)

provided f’ continuous at t =0

o ¢ is called doublet
e ¢/, 0", etc. are called higher-order impulses
@ Similar rules for higher-order impulses:

/OO s (1) (t) dt = (—1)kFK)(0)

if () continuous at t = 0
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interpretation of doublet §': take two impulses with magnitude +1/¢, a
distance € apart, and let ¢ — 0

1/¢

Then

[ ot (R0 229 4y 10110

oo € € €

converges to —f'(0) if ¢ — 0
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Caveat

4(t) is not a signal or function in the ordinary sense, it only makes
mathematical sense when inside an integral sign

@ We manipulate impulsive functions as if they were real functions,
which they aren’t

o It is safe to use impulsive functions in expressions like
o0 o0
/ F(E)5(t — T) dt, / FO (¢ — T) dt
—00 —00
provided f (resp, f') is continuous at t = T.

@ Some innocent looking expressions don't make any sense at all (e.g.,
5(t)? or 5(t%))
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Break

Talk about Office hours and coming to the first lab.
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Systems

@ A system transforms input signals into output signals.

o A system is a function mapping input signals into output signals.

@ We will concentrate on systems with one input and one output i.e.
single-input, single-output (SISO) systems.

o Notation:

o y = Sx or y = §(x), meaning the system S acts on an input signal x
to produce output signal y.

o y = Sx does not (in general) mean multiplication!

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 40 / 70



Block diagrams

Systems often denoted by block diagram:

o Lines with arrows denote signals (not wires).
o Boxes denote systems; arrows show inputs & outputs.

@ Special symbols for some systems.
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Examples

(with input signal x and output signal y)
Scaling system: y(t) = ax(t)

o Called an amplifier if |a| > 1.

o Called an attenuator if |a| < 1.

o Called inverting if a < 0.

o ais called the gain or scale factor.

@ Sometimes denoted by triangle or circle in block diagram:

X y x y x ¥y
_>a—>—>:>—>_’(:)'
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Differentiator: y(t) = x/(t)

t
Integrator: y(t) = / x(7) d7 (a'is often 0 or —o0)
a

Common notation for integrator:

43 /70
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time shift system: y(t) =x(t—T)
o called a delay system if T >0
o called a predictor system if T <0

Fall 2011-12 44 / 70
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convolution system:

y(t) = /x(tf P)h(r) dr,

where h is a given function (you'll be hearing much more about this!)
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Examples with multiple inputs

Inputs x1(t), x2(t), and Output y(t))

X1 y
o summing system: y(t) = x1(t) + x2(t) —bﬁ?—»
X2
X1 + y
o difference system: y(t) = x1(t) — xo(t) %?—p
X2

Xy y

o multiplier system: y(t) = xi(t)xx(t)
X2 |
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Interconnection of Systems

We can interconnect systems to form new systems,
o cascade (or series): y = G(F(x)) = GFx
X
F G

(note that block diagrams and algebra are reversed)
o sum (or parallel): y = Fx + Gx
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o feedback: y = F(x — Gy)

X . F y
G
In general,
@ Block diagrams are a symbolic way to describe a connection of
systems.

@ We can just as well write out the equations relating the signals.
@ We can go back and forth between the system block diagram and the

system equations.
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Example: Integrator with feedback

X+ / y

Input to integrator is x — ay, so

t
(x(7) = ay(7)) dT = y(t)
Another useful method: the input to an integrator is the derivative of its
output, so we have
x—ay=y

(of course, same as above)
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Linearity

A system F is linear if the following two properties hold:
© homogeneity: if x is any signal and a is any scalar,
F(ax) = aF(x)
@ superposition: if x and X are any two signals,
F(x+X) = F(x) + F(x)

In words, linearity means:

@ Scaling before or after the system is the same.
@ Summing before or after the system is the same.
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Linearity means the following pairs of block diagrams are equivalent, i.e.,
have the same output for any input(s)

X1
N Yy y
RO

Examples of linear systems: scaling system, differentiator, integrator,
running average, time shift, convolution, modulator, sampler.

Examples of nonlinear systems: sign detector, multiplier (sometimes),
comparator, quantizer, adaptive filter
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o Multiplier as a modulator, y(t) = x(t) cos(2rft), is linear.
X % y
cos(2mft)

o Multiplier as a squaring system, y(t) = x?(t) is nonlinear.

o
Ly
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System Memory

o A system is memoryless if the output depends only on the present
input.
> |deal amplifier
> |deal gear, transmission, or lever in a mechanical system

@ A system with memory has an output signal that depends on inputs
in the past or future.

> Energy storage circuit elements such as capacitors and inductors
> Springs or moving masses in mechanical systems

@ A causal system has an output that depends only on past or present
inputs.
> Any real physical circuit, or mechanical system.
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Time-Invariance

@ A system is time-invariant if a time shift in the input produces the
same time shift in the output.

o For a system F,
y(t) = Fx(t)
implies that
y(t—7)=Fx(t—7)

for any time shift 7.
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@ Implies that delay and the system F commute. These block diagrams

are equivalent:

y

—> Delay byt F —
y

F Delay byt |—

@ Time invariance is an important system property.

the analysis of systems.
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System Stability

. It greatly simplifies

Fall 2011-12 55 /70

@ Stability important for most engineering applications.

o Many definitions
o If a bounded input

[x(t)] < My < 0

always results in a bounded output

ly(t)] <M, < oo,

where M, and M, are finite positive numbers, the system is Bounded

Input Bounded Output (BIBO) stable.
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Example: Cruise control, from introduction,

requested J
error as speex
speeil o P g T P!
r e b7 Yy
T Car

The output y is
y =H(k(x—y))

We'll see later that this system can become unstable if k is too large
(depending on H)
o Positive error adds gas
o Delay car velocity change, speed overshoots
o Negative error cuts gas off
@ Delay in velocity change, speed undershoots
@ Repeat!

Ral2oii2 5770
System Invertibility

@ A system is invertible if the input signal can be recovered from the
output signal.

o If F is an invertible system, and
vy =Fx
then there is an inverse system F/VV such that
x = FINV, _ FINV Ey

so FINVF = |, the identity operator.

— F 2 gV
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Example: Multipath echo cancelation

Transmitter Receiver

Direct Path
eflected Path
I
A

x(t) y(t)
o Y
! x(t) ! Q y(t)

Input Output

Important problem in communications, radar, radio, cell phones.

Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 59 / 70

Generally there will be multiple echoes.

Multipath can be described by a system y = Fx

o If we transmit an impulse, we receive multiple delayed impulses.

@ One transmitted message gives multiple overlapping messages

We want to find a system F/NV that takes the multipath corrupted signal
y and recovers x

FINVy, = FINV(£x)
= (FMF)x

= X

Often possible if we allow a delay in the output.
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Example: AM Radio Transmitter and receiver

m(t) Propagation Y | ) | A2 h(t). A+m(t)
[A+m(t)] cos(w.t)

A cos(wt)

Transmitter Receiver

@ Multiple input systems

@ Linear and non-linear systems
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Systems Described by Differential Equations

Many systems are described by a linear constant coefficient ordinary
differential equation (LCCODE):

any M () + - - + ary'(t) + aoy(t) = bx™M(t) + - - + b1x'(t) + box(t)
with given initial conditions

YD), - Y(0), ¥(0)
(which fixes y(t), given x(t))

@ nis called the order of the system

@ bg,...,bm,a0,...,an are the coefficients of the system
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This is important because LCCODE systems are linear when initial
conditions are all zero.

@ Many systems can be described this way

o If we can describe a system this way, we know it is linear
Note that an LCCODE gives an implicit description of a system.

o It describes how x(t), y(t), and their derivatives interrelate
o It doesn't give you an explicit solution for y(t) in terms of x(t)

Soon we'll be able to explicitly express y(t) in terms of x(t)
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Examples

Simple examples
o scaling system (ag = 1, by = a)

y = ax
o integrator (a; =1, by = 1)

y =x
o differentiator (ag =1, by = 1)

y=x

63 /70

@ integrator with feedback (a few slides back, a; = 1,30 = a, by = 1)

y +ay=x
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2nd Order Circuit Example

L R

() c== 0

By Kirchoff's voltage law
x—L'-Ri—y=0

Using i = Cy/,
x—LCy" —RCy'—y =0

or
LCy" + RCy' +y =x

which is an LCCODE. This is a linear system.
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Mechanical System

Mass (car body)

m I y Output

(car height)

) Damper
Springs [ b (Shock Absorbers)

Input
I * (Road)

This can represent suspension system, or building during earthquake, ...
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o x(t) is displacement of base; y(t) is displacement of mass
o spring force is k(x — y); damping force is b(x — y)’
o Newton's equation is my” = b(x — y)' + k(x — y)

Rewrite as second-order LCCODE
my” + by’ + ky = bx' + kx

This is a linear system.
Fall 201112 67 /70

Discrete-Time Systems

@ Many of the same block diagram elements
o Scaling and delay blocks common

@ The system equations are difference equations
agy[n] + ary[n — 1]+ ... = box[n] + bix[n — 1] + ...

where x[n] is the input, and y[n] is the output.
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Discrete-Time System Example

<l yln]

—(H—»| Delayby T

@ The input into the delay is
e[n] = x{n] — ayln]

@ The output is y[n] = e[n — 1], so

y[n] = x[n—1] — ay[n — 1].
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Questions

Are these systems linear? Time invariant?

o y(t) = V/x(t)

o y(t) = x(t)z(t), where z(t) is a known function
o y(t) = x(at)

e y(t)=0

o y(t) =x(T 1)

A linear system F has an inverse system F"_ Is F" |inear?
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