
Endogeneity in Semiparametric Binary Random

Coefficient Models

Stefan Hoderlein∗

Brown University

First Draft: February 15, 2006

This Draft: October 14, 2008

Abstract

In this paper we consider the case of endogenous regressors in the binary choice model

under a weak median exclusion restriction, but without further specification of the distri-

bution of the unobserved random components. As a particularly relevant example for a

model where no semiparametric estimator has of yet been analyzed, we consider the binary

random coefficients model with endogenous regressors. However, many of the arguments

we make hold more generally in all endogenous binary choice models with heteroscedas-

ticity. We focus on the estimation of a centrality parameter β, because even in random

coefficient models usually an average effect and not the entire distribution of coefficients

is of interest. We use a control function IV assumption to identify a centrality parame-

ter that has the interpretation of a local average structural effect of the regressor on the

latent variable, and establish identification based on the mean ratio of derivatives of two

functions of the instruments. We propose an estimator based on sample counterparts, and

discuss the large sample behavior. In particular, we show
√

n consistency and derive the

asymptotic distribution. In the same framework, we propose tests for heteroscedasticity,

overidentification and endogeneity. We analyze the small sample performance through a

simulation study. An application of the model to IO demand data concludes this paper.

Keywords: Semiparametric, Binary Choice, Endogeneity, Average Derivative, Control

Function, Random Coefficients.
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1 Introduction

The Model: The binary choice model constitutes a workhorse of modern microeconometrics

and has found a great many applications throughout applied economics. It is commonly treated

in a latent variable formulation, i.e.

Y ∗ = X ′β + U (1.1)

Y = I {Y ∗ > 0} ,

where Y ∗ is an unobserved continuously distributed random variable, in the classical choice

literature often utility or differences in utility, X is a random K-vector of regressors, β is a

K-vector of fixed coefficients, and I {·} denotes the indicator of an event. Throughout much of

the literature, and indeed in this paper, interest centers on the coefficient β which summarizes

the effect of a set of regressors X on the dependent variable. If U is assumed independent

of X, and U follows a certain parametric distribution then E [Y |X] = FU(X ′β), where FU is

the known parametric cdf of U, and estimation is straightforward via ML. Both assumptions

are restrictive in many economic applications and have therefore come under some critique.

In particular, invoking these assumptions rules out that model (1.1) is the reduced form of

individual behavior in a heterogeneous population, where parameters vary across the population

in an unrestricted fashion, and it rules out endogeneity.

This paper aims at relaxing these critical assumptions, while retaining a simple and inter-

pretable structure. In particular, it establishes interpretation and constructive identification of

a centrality parameter β under assumptions that are compatible with a heterogeneous popu-

lation characterized by an unrestricted distribution of random coefficients. The identification

is constructive in the sense that it can indeed be employed to yield a
√

n consistent semi-

parametric estimator for this centrality parameter. The weakening of assumptions is twofold:

First, we do not want to place restrictive parametricity or full independence assumptions on the

distribution of the unobservables (or indeed any random variable in this model), and employ

instead relatively weak median exclusion restrictions. Second, due to its paramount importance

in applications we want to handle the case of endogenous regressors, e.g., we want to allow for

X to be correlated with U . The estimator we propose has a simple, “direct” structure, akin to

average derivative estimator (ADE). A characteristic feature of this class of estimators is that

they use a control function instrumental variables approach for identification.

Main Identification Idea: Throughout this paper, we will be concerned with model (1.1).

However, we will view model (1.1) as a reduced form of a structural model in a heterogeneous

population. As a consequence, we will also be concerned with the interpretation of β when

employing a sensible independence restrictions.
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The independence restriction we are invoking in model (1.1) is a conditional median exclu-

sion restriction. Specifically, we introduce a L random vector of instruments, denoted Z, and

assume that they are related to X via

X = ϑ(Z) + V, (1.2)

where ϑ is a smooth, but unknown function of Z. For instance, ϑ could be a continuous version

of the mean regression E [X|Z = z] = mX|Z(z), in which case V would be the mean regression

residuals, or it could also be a vector containing the conditional α quantiles of X1 conditional

on Z as first element (and X2, .., XK as remainder elements of the vector)1. Now, if we let the

conditional median of U given Z = z and V = v be denoted by k0.5
U |ZV (z, v), then our identifying

assumption can be formulated as

k0.5
U |ZV (z, v) = g(v),

for all (v, z) in its support. What does this assumption mean in economic terms, and why is

it a sensible assumption? In section 2 we show that this assumption is for instance implied by

a random coefficients model with endogeneity arising from omitted variables, as is common in

the empirical IO literature. In this case, the median exclusion restriction is implied for instance

if instruments are (jointly) independent of omitted variables and of V , but it holds also under

weaker restrictions.

What economic interpretation of β is implied by our assumptions? Taking the binary choice

random coefficients model as an example, in the second section we establish the following: 1.

If we are willing to assume conditionally symmetric random coefficients, we obtain that β has

the interpretation of an average coefficient. 2. In the absence of symmetry we show that β

has the interpretation of a local average structural derivative (see Hoderlein (2005, 2008) and

Hoderlein and Mammen (2007)).

Given that we have devised a sensible identification restriction and defined an interesting

structural parameter, the question that remains to be answered is how we actually identify and

estimate this parameter. To answer this question in a particularly simple example, consider the

special case where out of K continuously distributed regressors X1, .., XK , only X1 is endoge-

nous and there is exactly one additional instrument denoted by Z1 (and Z =
(
Z1, X2.., XK

)′
).

Finally, let Ȳ = k0.5
Y |ZV (Z, V ) = I {P [Y = 0|Z, V ] < 0.5} denote the conditional median of Y

given Z and V , and assume that ϑ(z) = E [X|Z = z] . Then, under assumptions to be detailed

below,

β = E
[[

DzE [X|Z]′
]−1∇zE

[
Ȳ |Z]

B(Z)
]
, (1.3)

1While the identification analysis proceeds on this level of generality, for the large sample theory we specify

ϑ to be the mean regression.
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where∇z and Dz denote gradient and Jacobian, and B(z) denotes a bounded weighting function

to be defined below. Intuitively, the identification follows by a combination of arguments

employed to identify average derivatives (see Powell, Stock and Stoker (1989), PSS, for short),

and the chain rule, and is only up to scale.

Additional Contributions: The flexibility in the model enables us to check the specifi-

cation for several issues that have not been considered exhaustively, if at all, in the literature

on this type of models. For instance, we propose powerful tests for endogeneity and het-

eroscedasticity. Another important issue we discuss is overidentification. As will turn out,

in a general nonseparable setup overidentification is markedly different from the issue in the

linear framework. In addition to clarifying the concept, we propose a Hausman type test for

overidentification. We develop a semiparametric notion of weakness of the instruments, and

establish how our approach allows to mitigate the problem of weak instruments. Finally, we

show that our approach allows to handle discrete and continuous endogenous regressors.

Literature: The binary choice model (1.1) with exogenous regressors has been analyzed

extensively in the semiparametric literature, most often via single index models. Since this

paper employs an average derivative type of estimator, our approach is related to contributions

by PSS (1989), Hristache, Juditsky and Spokoiny (2001) and Chaudhuri, Doksum and Samarov

(1997), to mention just a few. These direct estimators have several important advantages: they

are transparent in structure, easy to compute and implement, and are robust to some forms of

misspecification. While they have the drawback that they are not fully efficient, they can be

taken as departure point for so-called “one-step efficient estimators”. “Optimization”, or M -,

estimators for β, including semiparametric LS (Ichimura (1993)), semiparametric ML (Klein and

Spady (1993)), and general M -estimators (Delecroix and Hristache (1997)) are usually efficient,

but are rarely implemented in practise, because they lead to hard optimization problems in

high-dimensional spaces. Neither class of estimators can handle heteroscedasticity even in

the exogenous setting, and to do so one has to employ maximum score type estimators, see

Manski (1975). But these estimators have a slow convergence rate and a nonstandard limiting

distribution, and only the estimator of Horowitz (1992) achieves almost
√

n convergence to a

more standard limiting distribution.

In spite of the wealth of literature about model (1.1) in the exogenous case, and the impor-

tance of the concepts of endogeneity and instruments throughout econometrics, the research on

model (1.1) with endogenous regressors has been relatively limited. However, there are impor-

tant contributions that deserve mentioning. For the parametric case, we refer to Blundell and

Smith (1986). For the semiparametric case, Lewbel proposes the concept of special regressors,

i.e. one of the regressors is required to have infinite support, which is essential for identification

(Lewbel (1998)). Our approach is more closely related to the work of Blundell and Powell
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(2004), BP, for short. Like BP, we use a control function assumption to identify the model,

but as already mentioned in a different fashion. This makes our approach also weakly related

to other control function models in the semiparametric literature, most notably Newey, Powell

and Vella (1998) and Das, Newey and Vella (2003). Finally, our work is also related to Ai and

Chen (2001), Vytlacil and Yildiz (2007), and in particular the “Local Instruments” approach of

Heckman and Vytlacil (2005) and Florens, Heckman, Meghir and Vytlacil (2008) for analyzing

treatment effects.

Organization of Paper: In the next section, we establish the economic foundations of

our models in a heterogeneous population. In the case of a linear random coefficients model,

we derive the median exclusion restriction formally, and establish the interpretation of β stated

above. We then consider a stylized version of models in empirical industrial organization, and

discuss the restrictive features and assumptions in this literature that our method allows to

dispense with. In section three we state formally the assumptions required for identification of

β and provide a discussion. Moreover, we establish identification both in the heteroscedastic

as well as the homoscedastic case (we require the latter among other things to test the random

coefficients specification). This identification principle is constructive in the sense that it yields

direct estimator through sample counterparts. The asymptotic distribution of these estimators

is in the focus of the fourth section. Specifically, we establish
√

n consistency to a standard

limiting distribution2. Beyond suggesting a
√

n consistent estimator, the general identification

principle is fruitful in the sense that it allows to construct tests for endogeneity, heteroscedas-

ticity and overidentification, and this will be our concern in the fifth section. A simulation

study will occupy the sixth section. In the seventh section, we will apply our methods to a

real world discrete choice demand application: We consider the decision to subscribe to cable

TV, using data similar to those in Goolsbee and Petrin (2004). Finally, this paper ends with a

conclusion and an outlook.

2This is in stark contrast to the exogenous binary choice model, where single index estimators only allow for

very limited forms of heteroscedasticity (namely that the distribution of U |X is only a function of the index

X ′β), and only maximum score type estimators allow for heteroscedastic errors of general form (Manski (1975,

1985), Horowitz (1992)), but those do not achieve
√

n rate of convergence.
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2 An Example: Binary Demand Decisions in a Hetero-

geneous Population

2.1 What is a Parameter of Interest in a Heterogeneous Population?

The question that should be answered for any reduced form microeconometric model is how it

can be derived from individual behavior in a heterogeneous population. To answer this iden-

tification question for the one defined through (1.1), we start out with a general nonseparable

model of a heterogeneous population as in Hoderlein (2005, 2008) or Hoderlein and Mammen

(2007). The most general version of (1.1), has the structural unobservables (e.g., preferences)

influencing the latent variable in a nonseparable fashion, i.e. Y ∗ = φ(X, A), where A ∈ A

denotes the unobservables. Here A is a Borel space, e.g., the space of piecewise continuous

utility functions. Note that A may include objects like preferences, but also other omitted

determinants. In our example, we denote the former by A1, while the remainder of A shall

be denoted by A2. In empirical IO for instance, A2 are often omitted characteristics of the

product.

While we could proceed to discuss the model on this level of generality, in this paper we

restrict ourselves to linear models on individual level, largely because linear models are the

dominating class of models in economic applications. A linear heterogeneous population with

omitted variables A2 may then be formalized through a random coefficient model, i.e.,

Y ∗ = X ′β(A1) + A′
2γ(A1) (2.1)

Y = I {Y ∗ > 0} ,

where θ(A1) = (β(A1)
′, γ(A1)

′)′ is a mapping from the space of unobservables (say, preferences)

A1 ⊆ A into RK . Since we assume the random elements A1 (in our example, preferences) to vary

across the population, then so does θ(A1). This model admits a reduced form representation

as (1.1). What are now plausible stochastic conditions that we would like to impose on the

reduced form (1.1) to identify β, and how can they be derived from restrictions in the structural

model (2.1), and in particular on the random coefficients θ(A1)?

We answer this question under the assumption that the endogeneity arises from potential

correlation of X and A2 only, and that A1, e.g., the unobservable preferences that determine the

parameters, are independent from all economic variables in the system, i.e. A1 ⊥ (X, Z, A2). In

discrete choice demand analysis in empirical industrial organization for instance, this endoge-

nous regressor is the own price of the good, which is assumed to be correlated with its omitted

unobserved characteristics contained in A2.

An unnecessarily strong, but economically plausible identifying independence restriction

is the independence of instruments Z from all unobservables in the system, i.e., Z ⊥ (A, V ).
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Continuing our discrete choice example, the empirical IO literature suggests to use the wholesale

price, franchise fees, or other regional supply side characteristics of a market as instruments.

It is plausible that these instruments are independent of individual preferences and omitted

characteristics of the product. This assumption implies that X ⊥ A2|V, and recall that our

maintained hypothesis is that A1 ⊥ (X, V, A2) which is implied by A1 ⊥ (X, Z, A2) .

The following result states that under these independence conditions, we can derive an

exclusion restriction that defines a sensible centrality parameter of the distribution of random

coefficients in (2.1). For the result, we require the notation B = β(A1), C = A′
2γ(A1) and

U = X ′ (β(A1)− β)+A′
2γ(A1). Since this section is motivational, the statement of the theorem

is informal.

Theorem 1. Let the model defined by equations (1.1) and (1.2) be the reduced form of the

structural model defined in equations (1.2) and (2.1). Suppose that A1 ⊥ (X, Z,A2) and Z ⊥
(A, V ) hold. Assume further that, conditional on (X, V ): 1. (B,C) are jointly symmetrically

distributed about (β,E [C|V ]), and 2. U is absolutely continuous distributed with respect to

Lebesque measure. Finally, assume that regularity conditions hold such that all objects exist

and are well defined. Then follows that k0.5
U |ZV (Z, V ) = k0.5

U |XV (X, V ) = g(V ) and

β = E [β(A1)]

If we dispense with the conditional symmetry assumption, and start out with the median exclu-

sion restriction k0.5
U |ZV (Z, V ) = g(V ), then we obtain that k0.5

U |XV (X,V ) = g(V ) and

β = E
[
β(A1)|X = x, V = v, Y ∗ = k0.5

Y ∗|XV (x, v)
]
, (2.2)

for all (x, v) ∈ supp (X)× supp (V ).

Therefore, we conclude that our economically plausible independence assumption together

with symmetry in the distribution of random components imply a median exclusion restric-

tion and define a parameter β that is the mean of the distribution of random coefficients of

the observable regressors. More generally, if we just assume the median exclusion restriction

k0.5
U |ZV (Z, V ) = g(V ) but dispense with the symmetry assumption, we obtain that the coefficient

β has the interpretation of a local average structural derivative (which is invariant to changes in

x, v due to the linear random coefficient structure with exogenous A1). Since we may integrate

(2.2) over x, v, this implies that β = EXV

[
E

[
β(A1)|X, V, Y ∗ = k0.5

Y ∗|XV (X, V )
]]

, where EXV [·]
denotes expectation over the distribution of (X,V ), keeping the quantile of the unobservable

latent variable fixed at the median, i.e., at the center of the conditional distribution. If we

identify this center of the distribution with a type of individuals (the “average” person), then

we may speak of β as an average structural effect for this type. Another more statistical inter-

pretation of (2.2) is that of a best approximation to the underlying heterogeneous coefficient
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β(A1), conditioning on all the information that we have to our disposal in the data3. In what

follows, we will treat our model under the assumption that kα
U |Z,V (Z, V ) = g(V ), with prob-

ability one, so that the latter interpretation is the most adequate. The role of the symmetry

assumption is to point out that under stronger assumptions β reduces to a completely standard

object.

2.2 Implications of our Assumptions: The Example of a Binary De-

mand Decision in Empirical IO

In this subsection, we relate our model to the literature on random coefficient models in empiri-

cal industrial organization, because it serves as a nice example for the importance of accounting

appropriately for unobserved heterogeneity. The scenario typically considered in this literature

is often more complex than ours (for a comprehensive overview see Ackerberg, Benkard, Berry

and Pakes (2006), ABBP for short). Most notably, it involves multivariate choice model, while

we focus only on the binary case. Moreover, the specific model varies depending on the data at

hand, which is often a combination of micro - and macrodata. Hence, our model can only be

seen as a stylized version of models in that field, where the emphasis is on the way heterogeneity

and endogeneity is treated in discrete choice models.

For this subsection only we adopt the notation of the discrete choice demand literature,

to make the ties absolutely clear. In this literature it is commonly assumed that utility Uij of

individual consumer i derived by consumption of product j (out of sets i = 1, .., n of consumers,

and j = 1, .., J of products) is given by

Uij = υ(Xij, ξij, ζi, νi, β),

where Xij, and ξij represent observed and unobserved characteristics of the product, ζi and νi

denote observed and unobserved characteristics of the consumer, and β is a finite dimensional

nonrandom parameter characterizing all individuals’ preference orderings, see ABBP. Again,

this setup is stylized in the sense that the product characteristics may vary across i, so typical

direct applications of individually varying unobserved product characteristics ξij include adver-

tisement or retail activities. However, the arguments are easily extended to setups where the

quality of the goods varies across markets or time.

We will not discuss the model on this level of generality. Instead, we follow the route

typically assumed in this literature, namely to consider a linear specification for υ on individual

3See Hoderlein and Mammen (2008) for a related discussion in the case of a continuous dependent variable.

As already mentioned, this result could be generalized to models of the form Y ∗ = φ(X, A) = m(X) + U , with

U = φ(X, A)−m(X) and k0.5
U |XV (X, V ) = l(V ), but due to the lack of relevance for applications we desist from

discussing this more general case here.
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level (but see Berry and Haile (2008) for nonparametric identification if υ is nonlinear). The

model finally considered has the form

Uij = X ′
ijθi + ξ′ijλi + εij, (2.3)

where for the individual specific marginal effect of the k-th regressor Xijk, θik, we have θik =

β1
k + β2′

k ζi + β3′
k νi, where β1

k , β
2
k , β

3
k are subvectors of βk. Typically, it is assumed that ξij is

only a random scalar, and utility is normalized by setting λi = 1. Moreover, εij is assumed to

be an error that is iid across alternatives j and individuals i, and is typically assumed to be

extreme value distributed (i.e., the utility differences are logistically distributed). Endogeneity

is believed to be an issue because there is correlation between the unobserved product charac-

teristics ξij and the own price which is contained in Xij. Summarizing, for J = 2, this model

fits exactly into the framework put forward in the previous subsection: the random coefficients

can be seen as function of unobservables but are generally believed to be exogenous, while there

is a important (set of) omitted variables, in particular unobserved product characteristics that

cause the own price to be endogenous. In our notation, νi corresponds to one of the factors in

A1i (entering the specification in a restrictive fashion), while ξij corresponds to A2i.

From an economic theory point of view, the parametric specification in model (2.3) has

several shortcomings that our method allows to overcome: First, the assumption of the very

existence of εij contradicts the spirit of the characteristics based approach (see Berry and

Pakes (2005) for a lucid discussion). Second, the usually invoked assumption of extreme value

distributed errors has implausible economic implications, most notably it violates the indepen-

dence of irrelevant alternatives principle in cases where there is no other source of randomness

e.g., no random coefficients. Third, the assumption that there be a single unobservable product

characteristic whose effect is similar across individuals appears very restrictive. Fourth, we do

not require any parametric distribution assumption on the density of random coefficients like

the commonly assumed (symmetric!) normal distribution. Fifth, our approach is direct, avoids

computationally difficult and costly numerical inversions, and connects to recent developments

in microeconometrics.

From now on, since we focus on a binary setting we drop the j subscript. A stylized

specification that overcomes these shortcomings is

Ui = X ′
iβ + ξ′iλi + Qi︸ ︷︷ ︸

Ui

,

where Xi = (X ′ ⊗ ζi)
′, Qi =

∑
k=1,...,K Qik, β isz for k = 1, ..., K, the collection of β1

k and β2
k ,

and Qik = β3′
k νiXk. The random error Ui has now two components. An exogenous “random

coefficient interaction term” part Qi, and an endogenous “random coefficient in unobservables
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characteristics” part ξ′iλi. A stylized binary version of an empirical IO model would hence have

the reduced form

Yi = I {X ′
iβ + Ui > 0} ,

where obviously the composite error term Ui is heteroscedastic and endogenous in exactly

the (complicated) fashion outlined in the previous section. As we have seen there, a median

exclusion restriction arises naturally out of this structural decision model, and gives rise to a

desired interpretation of β as average structural derivative. We are now going to establish how

to actually identify and estimate β under these rather weak assumptions.

3 Details of the Estimator in the Endogenous Binary

Choice Random Coefficients Model

3.1 Identification via Median Restriction on U

Throughout this section, and indeed through much of the paper, we require the following

notation: Let the K × L matrix of derivatives of a K-vector valued Borel function g(z) be

denoted by Dzg(z), and let ∇zg(z) denote the gradient of a scalar valued function. Denote by

mY |ZV (z, v) a continuous version of E [Y |Z = z, V = v], and let fA(a), fAB(a, b) and fA|B(a; b)

be the marginal, joint and conditional Radon-Nikodym density of the random vectors A and

B with respect to some underlying measure µ, which may be the Lebesgue or the counting

measure, (i.e., A may be discretely or continuously distributed). Define the nonparametric

score Qz (v, z) = ∇z log fV |Z(v; z). Let kα
S|Z(z) denote the conditional α-quantile of a random

variable S given Z = z, i.e. for α ∈ (0, 1) kα
S|Z(z) is defined by P(Y ≤ kα

S|Z(z)|Z = z) = α. Let

G− denote the Moore-Penrose pseudo-inverse of a matrix G. Finally, let ck, k = 1, 2, ... denote

generic constants, and note that we suppress the arguments of the functions whenever if it is

convenient.

As already discussed in the introduction, the main idea is now that instead of running

a regression using Y, we employ Ȳ = k0.5
Y |ZV (Z, V ), i.e. the conditional median of Y given

Z and V (which is the L1-projection of Y on Z × V), and consider the L2-projection of Ȳ

on Z. Consequently, we consider weighting functions defined on Z only. In the following two

subsections we first list and discuss all assumptions that specify the true population distribution

and the DGP, and then establish the role they play in identifying β. Readers less interested in

the econometric details of this model may skip these subsections, and proceed directly to the

main result (theorem 2).
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3.1.1 Assumptions

Assumption 1. The data (Yi, Xi, Zi), i = 1, . . . , n are independent and identically distributed

such that (Yi, Xi, Zi) ∼ (Y, X, Z) ∈ Y × X × Z ⊂ R1+K+L The joint distribution of (Y, X, Z) is

absolutely continuous with respect to a σ-finite measure µ on Y × X × Z with Radon-Nikodym

density fY XZ(y, x, z). The underlying measure µ can be written as µ = µY X × µZ , where µZ is

the Lebesgue measure.

Assumption 2. The weighting function B(z) is nonzero and bounded with compact support

B ⊂ Z, where usually Z = RL.

Assumption 3. ϑ(z) is continuously differentiable in the components of z for all z ∈ Int (B).

[Dzϑ(z)′]− exists and every element is bounded from below for all z ∈ B. [Dzϑ(Z)′]− is square

integrable on B.

Assumption 4. E [Y |Z = z] = mY |Z(z) is continuously differentiable in the components of z

for all z ∈ Int (B). DzmY |Z(Z) is square integrable on B. g(z, v) = FU |V (ϑ(z)′β+v′β; v)fV |Z(v; z)

is bounded in absolute value by a nonnegative integrable function q(z), for all z ∈ B.

Assumption 5. E
[
Ȳ |Z = z

]
= mȲ |Z(z) is continuously differentiable in the components of z

for all z ∈ Int (B). DzmȲ |Z(Z) is square integrable on B.

For the stochastic terms U and V , the following holds:

Assumption 6. U and V are jointly continuously distributed.

In addition, either of the following hold:

Assumption 7. U is independent of Z given V .

Assumption 8. 1. k0.5
U |ZV (Z, V ) = k0.5

U |XV (X,V ) = g(V ).

2. Either of the following hold:

a. Let Ṽ = l(V ) = − (g(V ) + V ′β). Then assume that Ṽ is independent of Z. Moreover,

Ṽ is absolutely continuously with respect to Lebesgue measure, with Radon-Nikodym den-

sity fṼ . fṼ ($) is differentiable for all $ ∈ im(l). Finally, fṼ (Dzϑ(Z)′β) is absolutely

integrable on B.

b. There is one endogenous regressor Xk, and l is a continuous piecewise invertible func-

tion. Moreover, fV |Z(v, z) and its partial derivatives wrt the components of z are bounded

on B from below and above, i.e. c1 > sup(v,z)∈supp(V )×B fV |Z(v, z) ≥ inf(v,z)∈supp(V )×B fV |Z(v, z) =

c2 > 0, and c3 > sup(v,z)∈supp(V )×B
∥∥∇zfV |Z(v, z)

∥∥ ≥ inf(v,z)∈supp(V )×B
∥∥∇zfV |Z(v, z)

∥∥ =
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c4 > 0. Finally, let Qz (V, Z) be absolutely integrable on supp(V ) × B , and let τ(z) =

E
[
Ȳ Qz (V, Z) |Z = z

]
be square integrable on B.

c. Let 8.3b hold, but instead of one endogenous regressor, assume there are many endoge-

nous regressors X1, .., XK1, K1 ≤ K, and in addition g(v) = v′γ, with γ ∈ RK1 .

Remark 3.1 - Discussion of Assumptions: Starting with assumption 1, while we may

allow for discrete endogenous regressors we assume to possess continuously distributed instru-

ments. Strictly speaking, we do not even require continuous instruments, but an estimator akin

to Horowitz and Haerdle (1998) in the exogenous setting is beyond the scope of this paper.

The iid assumption is inessential and may be relaxed to allow for some time series dependence.

For the choice of weighting function B, due to assumption 2 we delete all observations outside

a fixed multivariate interval Iz. As such, the weighting is unrestrictive and merely serves as a

devise to simplify already involved derivations below. It could be abandoned at the price of a

vanishing trimming procedure. In addition we require that [Dzϑ(z)′]− exists and is bounded on

B (cf. assumption 3), and hence we choose B(z) = I {z ∈ Iz} I {det |Dzϑ(z)Dzϑ(z)′| ≥ b} , with

b > 0. By choosing the weighting function and the region B appropriately we may ensure that

the instruments are not weak in the sense that det |Dzϑ(z)Dzϑ(z)′| ≥ b for some subset of Z
with positive measure. If we view the derivative in a linear regression of X on Z as an average

derivative, it may be the case that instruments are on average not strongly related to endoge-

nous regressors, but are quite informative for β in certain areas of Z space. We consider it to

be an advantage of our nonparametric approach that we can concentrate on those areas, and

hence suggest that a similar weighting be performed in applications. However, in applications

B is usually not known, implying that a threshold b be chosen, and Dzϑ(z) be pre-estimated4.

Particularly novel is assumption 8.1. Instead of the full independence of U and Z conditional

on V assumed in assumption 7 (and implying the Blundell and Powell (2004) assumption

U⊥X|V ) this assumption (only) imposes a conditional location restriction. Hence it allows for

all other quantiles of U than the median to depend on Z and V, and thus on X, in an arbitrary

fashion, which as we have seen in the introduction is sensible when unobserved heterogeneity

is modelled. Assumption 8.2a covers the case when Ṽ is independent of Z, in which case the

function l need not be restricted at all. The other assumptions 8.2b–8.2c allow for arbitrary

dependence between V and Z at the expense of placing some structure on l. In the case of a

single endogenous regressor this structure is very general: indeed, any continuous and piecewise

4The trimming becomes then dependent on estimated quantities. We skip the large sample theory of such

an approach, because it adds little new insight and makes the analysis more involved. An interesting situation

arises when the instruments are weak everywhere. We conjecture that we may derive a generalized inverse by

some type of regularization, e.g. by constructing a matrix [Dzϑ(Z)′]∗ that is analogous to, say Ridge regression.

However, we do leave the explicit behavior of such a model for future research.
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invertible function will do. If there are many endogenous regressors, we still obtain identification

in the important examples when l is of single index form (a combination of this assumption

with assumption 8.2b allows for l being a piecewise invertible function of an index).

3.1.2 Essential Arguments in the Identification of β in the Heteroscedastic Case

To see how assumptions 1–8 help in identifying β, rewrite the model as follows

Y = I
{
(ϑ(Z) + V )′ β + U > 0

}
. (3.1)

Note first that under assumption 8.3 the conditional median Ȳ becomes

Ȳ = I
{
ϑ(Z)′β + k0.5

U |ZV (Z, V ) + V ′β > 0
}

= I {ϑ(Z)′β > l(V )} , (3.2)

as I is a monotonic function. This very much resembles the standard model, but with Ȳ

instead of Y. However, note two complications: first Ṽ = l(V ) may not be fully independent of

Z, second, l is unknown. We now establish that β is nevertheless constructively identified in

this setup.

To do so, we start with the case when Ṽ is fully independent of Z, i.e., the scenario is as given

in 8.3a. Then,

mȲ |Z(z) = E
[
Ȳ |Z = z

]
= P {ϑ(z)′β > l(V )} (3.3)

due to standard arguments. To focus now on the essential arguments, we consider only a

compact set B ⊂ Z and a nonzero and bounded weighting function B(z) with support B, see

assumption 2. Since mȲ |Z(z) and ϑ(z) are continuously differentiable in all components of Z,

for all z ∈ B, we obtain by the chain rule

∇zmȲ |Z(Z) = fl(V ) (ϑ(Z)′β) Dzϑ(Z)′β, (3.4)

with probability one. This steps rules out that X contains a constant. Moreover, note that

fl(V ) is a scalar valued function. Next, we premultiply equation (3.4) by the generalized inverse

[Dzϑ(Z)′]−, which exists on B due to assumption 3, and the weighting function B(z) to obtain

[Dzϑ(Z)′]−∇zmȲ |Z(Z)B(Z) = βfl(V ) (ϑ(Z)′β) B(Z), (3.5)

or, upon taking expectations,

βc1 = E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
, (3.6)

where c = E
[
fl(V ) (ϑ(Z)′β) B(Z)

]
. From now on, we will tacitly suppress this constant, so

that identification is only up to scale. This last step is warranted, because the elementwise

square integrability of all functions on B (assumption 5), together with Cauchy-Schwarz ensures

that the expectations exist. The identification of β in the case when V and Z are not fully

independent (i.e., equation (3.8) below) is harder to show, and left to the appendix.
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3.1.3 Main Identification Results

The following theorem summarizes the discussion in the previous section and in the appendix:

Theorem 2. (i) Let the true model be as defined in 1.1 and 1.2, and suppose that assump-

tions 1–3, 5–6 and 8.1– 8.2a hold. Assume further that E
[
fV̄ |Z (ϑ(Z)′β; Z) B(Z)

]
= 1. Then

β is identified by relationship:

β = E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
. (3.7)

(ii) If instead of assumption 8.2a either of assumptions 8.2b – 8.2c hold, then we obtain that β

is identified up to scale by

β = E
[
[Dzϑ(Z)′]−

{∇zE
[
Ȳ |Z]− E [

Ȳ Qz (V, Z) |Z]}
B(Z)

]
, (3.8)

where Qz (V, Z) denotes the nonparametric score ∇z log fV |Z(V ; Z).

(iii) If we strengthen the conditional median independence assumption 8 to the full independence

assumption 7 and assume that assumption 4 holds, we obtain that in addition to (3.8), β is (up

to scale) identified by

E
[
[Dzϑ(Z)′]− {∇zE [Y |Z]− E [Y Qz(V, Z)|Z]}B(Z)

]
, (3.9)

as well as

E
[
[Dzϑ(Z)′]−

{
∇zE

[
Y̆ |Z

]
− E

[
Y̆ Qz(V, Z)|Z

]}
B(Z)

]
, (3.10)

where Y̆ = E [Y |Z, V ].

Remark 3.2 - Interpretation of Theorem 2: First, consider the scenario where V and

Z are independent which gives rise to (3.7). β is identified by a weighted average ratio of

derivatives, involving the derivatives of the function ϑ, and of the mean regression of Ȳ (i.e.,

the conditional median given Z and V ), on Z alone. Note that the control residuals V do not

appear in this equation, however, the model relies on correct specification of the conditional

median restriction and of ϑ. Allowing ϑ to be a conditional mean or a quantile enables the

applied researcher to choose between various specifications of the IV equation, in order to select

the one with the best economic interpretation (or one that works if the endogenous regressors

do not have moments).

This identification result is constructive in the sense that it suggests in a straightfor-

ward fashion a sample counterpart estimator by replacing all functions by nonparametric es-

timators and the expectation by the average. While we always obtain a term of the form

E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
, note that in the more general case where V and Z are allowed

to be dependent we obtain an additional correction term, i.e. E
[
[Dzϑ(Z)′]− E

[
Ȳ Qz (V, Z) |Z]

B(Z)
]
,
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which accounts for the higher order dependence in the IV equation. The same applies in the

full independence scenario, i.e., when U ⊥ V |Z.

Note that we have not ruled out discrete endogenous regressors by any assumption in this

section. Indeed, all derivations in this section go through if for the endogenous regressor X1,

X1 = I {Z ′δ > W} and Z ⊥ W , ϑ(Z) = E [X|Z] = (FW (Z ′δ) , X2, .., XK)′. In this case, we

may think of ϑ(Z) as smoothed and exogenous version of X1. Consequently, we may derive an

estimator with the structure of (3.7), which allows for both discrete endogenous regressors and

heteroscedasticity of U .

It is instructive to compare the heteroscedastic case with the case when U ⊥ V |Z. Observe

that the independence assumption 7 implies assumption 8, so that equation (3.8) remains

valid. But we obtain in addition that β is identified up to scale by (3.9) and (3.10). Under full

independence, we have thus a battery of potential estimating equations, where we could either

use directly an L2-projection of Y on Z, or use a two projection strategy, where we use L1-,

respectively, L2-projections of Y on(Z, V ) in the first stage, and then use a L2-projection in

the second stage. As shown below, we are able to obtain a powerful test for heteroscedasticity

out of a comparison.

4 A Sample Counterpart Estimator: Asymptotic Distri-

bution and Conditions for
√

n Consistency

4.1 The Case for Direct Estimation

As mentioned above, the identification principle does not necessarily imply that we have to use

a direct estimator. Indeed, in the case where assumption 8.2a holds (i.e., Ṽ ⊥ Z), we could

base an optimization estimator on equation (3.2), i.e.

Ȳ = I
{

ϑ(Z)′β > Ṽ )
}

. (4.1)

However, there are a number of reasons to use direct estimators here. Several have already

been mentioned: First, they are natural because they build upon sample counterparts of the

identification result. Consequently, their mechanics is easily understood, which makes them

accessible to applied people. Moreover, several related issues (like overidentification) can be

discussed straightforwardly. Second, they are robust to certain forms of misspecification. Third,

they avoid the optimization of a highly nonlinear function, which both may not lead to global

maxima (sometimes not even to well defined ones, if the semiparametric likelihood is flat), and

may be computationally very expensive.
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There are, however, also reasons that speak against the use of kernel based direct estimators.

One of the theoretical arguments against them is that they require higher order smoothness

assumptions, as will be obvious below. Note, however, that in the general setup with unre-

stricted (nonparametric) IV equation X = ϑ(Z) + V , there is something like a “diminished

smoothness gap”. Any optimization estimator depends on an estimator V̂ of V as a regressor.

In the general nonparametric setup, this is a function of a nonparametric estimator for ϑ. Using

results in Newey (1994), it is straightforward to see that for a
√

n consistent estimator of β we

require that E
[
ϑ̂
]
− ϑ = op

(
n−1/2

)
for the “no bias condition” to hold. In the kernel case this

is, however, only possible under smoothness assumptions on ϑ, which are very similar to the

ones we require to hold for our direct estimator, in particular undersmoothing.

The second main drawback of direct estimators is the lack of efficiency compared to opti-

mization estimators. Improving the efficiency, however, is possible, as we show in a companion

paper (Hoderlein (2008)) for the full independence case, where we advocate so called one step

efficient estimators. Alternatively, as in Newey and Stoker’s (1994) analysis of the weighted

average derivative estimators, we can define optimal weights.

4.2 A Sample Counterpart Estimator for β

In this section, we discuss the behavior of a sample counterpart estimator to (3.7) under inde-

pendence of V from Z, and we leave the more involved analysis that includes the correction term

E
[
[Dzϑ(Z)′]− E

[
Ȳ Qz (V, Z) |Z]

B(Z)
]

for future research. Moreover, throughout this section,

we focus on the case when ϑ(z) = mX|Z(z), i.e., ϑ is the nonparametric mean regression, and

we leave the quantile regression for future work.

The first impression from looking at

β = E
[[

DzmX|Z(Z)′
]−∇zE

[
Ȳ |Z]

B(Z)
]
. (4.2)

is that due to the non-smoothness in Ȳ no fast enough first step estimator can be devised for

an average derivative type estimator to become root n estimable. However, this is not the case.

To see how the estimator is constructed, and understand why it is
√

n consistent, note first

that since Y is binary,

Ȳ = k0.5
Y |ZV (Z, V ) = I {P [Y = 0|Z, V ] < 0.5} ,

and consequently, E
[
Ȳ |Z]

= P [P [Y = 0|Z, V ] < 0.5|Z] This suggests estimating∇zE
[
Ȳ |Z = z

]

via ∑
j

∇zWj(z)I
{

P̂j < 0.5
}

,
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where Wj(z) are appropriate Kernel weights, e.g.,
[∑

j Khj(z)
]−1

Khj(z),Khj(z) = h−LK((Zj − z) /h)

and K((Zj − z) /h) = Πl=1,..,LK
((

Z l
j − zl

)
/h

)
is a standard L-variate product kernel with

standard univariate kernel function K. Moreover, P̂j denotes an estimator of Pj = p(Zj, Vj) =

P [Yj = 0|Zj, Vj], However, the problem with this estimator is that the pre-estimator P̂j appears

within the nondifferentiable indicator, resulting in a potentially very difficult pre-estimation

analysis. To improve upon the tractability of the problem, we replace the indicator I by a

smooth version thereof. Specifically, let K (ξ) =
∫∞

ξ
K(t)dt. Then, a straightforward sample

counterpart estimator to β = E
[[

DzmX|Z(Z)′
]−∇zE

[
Ȳ |Z]

B(Z)
]
, looks as follows:

β̂H = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)K
{(

P̂j − 0.5
)

/h
}

B(Zj), (4.3)

where the subscript H indicates “heterogeneity”. As is shown formally in theorems 3 and 4

below, the main result of this section is that under appropriate assumptions

√
n

(
β̂H − β

) D−→ N (0, ΣH),

where ΣH is defined as ΣH = E
(∑3

k=1 σkσ
′
k

)
+ 2E (σ2σ

′
3)− ββ′, and

σ1 =
[
DzmX|Z(Zi)

′]−∇zmȲ |Z(Zi)B(Zi),

σ2 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)V

′
i

[
DzmX|Z(Zi)

′]−∇zmȲ |Z(Zi)B(Zi),

σ3 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)

(
Ȳi −mȲ |Z(Zi)

)
B(Zi).

(4.4)

To understand the large sample behavior of this estimator, rewrite β̂H as β̂H = T1n +T2n +T3n,

where

T1n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)ȲjB(Zj),

T2n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj), (4.5)

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)
[
K

{
(P̂j − 0.5)/h

}
−K {(Pj − 0.5) /h}

]
B(Zj)..

In this decomposition, T1n is the leading term. It will dominate the asymptotic distribution.

Its large sample behavior can be established using theorem 3, which also covers the sample

counterparts estimator in the full independence case, which is defined as

β̂1 =
1

n

∑
i

[
Dzm̂X|Z (Zi)

′]−∇zm̂Y |Z (Zi) B(Zi). (4.6)

Hence, we will first discuss the independence case. Then, we will give assumptions under

which T2n and T3n will tend to zero faster than the leading term. Essentially, these conditions

are higher order smoothness conditions on the conditional cdf FP |Z and on fZ , as well as the

corresponding restrictions on the kernel (i.e., to be of higher order), so that fast enough rates

of convergence are obtained.
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4.3 The Large Sample Behavior of β̂1

When discussing the estimation of β using any regression it is important to clarify the prop-

erties of details of the estimator (4.6). This concerns in particular the kernel and bandwidth.

As mentioned above we use a product kernel in all regressions. Therefore we formulate our

assumptions for the one-dimensional kernel functions K. To simplify things further, instead

of a bandwidth vector h ∈ RL we assume that we have only one single bandwidth for each

regression, denoted h. We shall make use of the following notation: Define kernel constants

µk =

∫
ukK(u)du and κ2

k =

∫
ukK(u)2du.

In principle, we also have two bandwidths to consider, one in estimating mX|Z , and one in esti-

mating mY |Z . However, since the estimation problems are symmetric, Since (i.e., in particular

both mean regressions share the same regressors and have thus the same dimensionality), we

assume the same kernel and the same bandwidth, denoted by K and h, in both regressions.

Our assumptions regarding kernel and bandwidth are standard (cf. PSS):

Assumption 9. Let r = (L+4)/2 if L is even and r = (L+3)/2 if L is odd. All partial deriva-

tives of E [X|Z = z], E [Y |Z = z] and fZ(z) of order r+1 exist for all z ∈ B. Moreover, the ex-

pectations of
[
DzmX|Z(Z)′

]−
BYl(Z) and

[
DzmX|Z(Z)′

]−
BXl(Z)

[
DzmX|Z(Z)′

]−∇zmY |Z(Z)

exist for all l = 1, ..., r,, where BYl (resp., BXl) contains sums of products of all partial deriva-

tives of mY |Z and fZ (resp. mX|Z and fZ) such that the combined order of derivatives of the

product is at most l + 1.

Assumption 10. The one-dimensional kernel is Lipschitz continuous, bounded, has compact

support, is symmetric around 0 and of order r (i. e. µk =
∫

ukK(u)du = 0 for all k < r and∫
urK(u)du < ∞).

Assumption 11. As n →∞, h → 0, nhL+2 →∞ and nh2r → 0.

The following theorem summarizes the results when is ϑ = mX|Z . In particular, it estab-

lishes asymptotic normality of the appropriate sample counterpart estimators
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Theorem 3. Let the true model be as defined in 1.1 and 1.2. Suppose assumptions 1–

4, 6–7, and 9– 11 hold. Assume further that V ⊥ Z. For scale normalization, assume

E
[
fU |V (X ′β; V ) B(Z)

]
= 1. Then,

√
n

(
β̂1 − β

) D−→ N (0, Σ1)

where

Σ1 = E

(
3∑

k=1

σkσ
′
k

)
+ 2E (σ2σ

′
3)− ββ′

and

σ1 =
[
DzmX|Z(Zi)

′]−∇zmY |Z(Zi)B(Zi)

σ2 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)V

′
i

[
DzmX|Z(Zi)

′]−∇zmY |Z(Zi)B(Zi)

σ3 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)

(
Yi −mY |Z(Zi)

)
B(Zi)

Remark 4.1 – Discussion of Theorem 3: The first results shows a number of parallels

to PSS in the case of exogenous ADEs. Similar to PSS, we obtain root-n consistency of our

estimator for β, and we may be able to eliminate the bias under similar assumptions on the rate

of convergence as detailed in assumptions 9 and 11. The variance in term is a more complicated

expression, but shares similar features, in particular in the first two terms, with the PSS result.

This will be our baseline result. discuss the conditions under which we may include first stage

projections of Y , like the median regression that is required to deal with heteroscedasticity.

Remark 4.2 – Estimating Σ1: Estimation of the variance components is straightforward by

sample counterparts. For instance, an estimator for Σ23
1 = E (σ2σ

′
3) is given by

Σ̂23
1 = n−1

∑
f̂Z(Zi)

−2
[
Dzm̂X|Z(Zi)

′]−∇zf̂Z(Zi)
(
Yi − m̂Y |Z(Zi)

)

×
{[

Dzm̂X|Z(Zi)
′]−∇zf̂Z(Zi)

(
Xi − m̂X|Z(Zi)

)′ [
Dzm̂X|Z(Zi)

′]−∇zm̂Y |Z(Zi)
}′

B(Zi).

Consistency of this estimator can essentially be shown by appealing to a law of large numbers,

but this analysis is beyond the scope of this paper.

4.4 The Large Sample Behavior of β̂H

We now extend theorem 3 to the heteroscedastic case. To treat heteroscedasticity, we have

introduced the two projection estimator

β̂H = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)K
{(

P̂j − 0.5
)

/h
}

B(Zj),

Recall the decomposition β̂H = T1n + T2n + T3n in (4.5). The first term T1n can be handled

along exactly the same lines as the estimator in theorem 3, using some minor modifications
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in assumptions. It remains to be shown that the terms T2n and T3n tend to zero faster. To

this end, we have to be precise about details of the estimator β̂H . First, there are several

bandwidths: There is a bandwidth associated with the K {·} function, as well as smoothness

parameters when estimating Pj = p(Zj, Vj). To denote the different kernels and bandwidths,

we call the derivative of K {·} K1, a kernel with bandwidth h1 and order r1, and the univariate

elements of a product kernel employed in the estimation of p as K2, with bandwidth h2 and

order r2.

Assumption 12. K1 and K2 are continuous, bounded, compactly supported, and symmetric

functions of order r1, r2 (i. e.
∫

ukK(u)du = 0 for all k < r and
∫

urK(u)du < ∞).

Assumption 13. Let r = (L + 4)/2 if L is even and r = (L + 3)/2 if L is odd. All partial

derivatives of FP |Z and fZ(z) of order r + 1 exist for all z ∈ B. Moreover, the expectations

of
[
DzmX|Z(Z)′

]−
BFl(Z) and

[
DzmX|Z(Z)′

]−
BFl(Z)

[
DzmX|Z(Z)′

]−∇zmY |Z(Z) exist for all

l = 1, ..., r, where BFl contains sums of products of all partial derivatives of FP |Z and fZ such

that the combined order of derivatives of the product is at most l + 1.

Assumption 14. fZV is bounded and has bounded first partial derivatives with respect to all

components of z, for all z ∈ B.

Assumption 15. As n →∞, h1, h2 → 0, nh1, nh
L+dim(V )+2
2 →∞ and nh2r1

1 , nh
L+dim(V )+4
2 → 0.

Note that we require higher order smoothness conditions on FP |Z and fZ that in connection

with higher order kernels ensure that the bias terms
√

nT2n and
√

nT3n are op(1).

Theorem 4. Let the true model be as defined in 1.1 and 1.2, and suppose that assumptions

1–3, 5–6, 8.1–8.2a, 9–15 are true. Assume further E
[
fV̄ |Z

(
mX|Z(Z)′β; Z

)
B(Z)

]
= 1 holds.

Then,
√

nT2n = op(1),
√

nT3n = op(1), and
√

n
(
β̂H − β

) D−→ N (0, ΣH), where ΣH is defined

in equation (4.4).

This theorem characterizes the large sample behavior of our estimator. Under the smooth-

ness and higher order bias reduction assumptions, it essentially behaves like the independence

case estimator β̂1, with Y replaced by Ȳ , i.e., with known conditional median.

5 Specification Testing

5.1 Testing for Endogeneity

The first question that we can analyze within our framework is whether regressors are endoge-

nous. There are a variety of options. As in Hoderlein (2005, 2008) and Hoderlein and Mammen
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(2008), we may compare the regression E [Y |X] with the regression E [Y |X, V ]. Under the null

of exogeneity, the two functions should be the same, and hence we use a standard nonpara-

metric omission of variables test, with the only added difficulty that V is now a generated

regressor. This test would be consistent regardless of whether the single index specification on

the regressors is correct or not, and would deliver nonparametric test statistics that have local

power against Pitman alternatives converging at a certain rate. This procedure can be seen

as a nonparametric generalization of Hausman’s (1978) second test for the inclusion of control

functions as test of exogeneity in a linear model.

However, if we believe the index specification to be correct, than there are other, and in

some instances better, options. Note that, under the null of exogeneity, a sample counter-

part estimators to the average derivative identification principle β = E [∇xE [Y |X] C(X)] (C

is a again a bounded weighting function), and an estimator based on our identification prin-

ciple (say, β = E
[[

DzmX|Z(Z)′
]−∇zE [Y |Z] B(Z)

]
), should yield estimators that vary only

be sample randomness, while under the alternative they should differ significantly. Hence, a

similar test as the original test in Hausman (1978) may be performed. Let β̂Ex denote a sam-

ple counterpart estimator to E [∇xE [Y |X] C(X)] like the PSS ADE, β̂End any of the sample

counterpart estimator to E
[[

DzmX|Z(Z)′
]−∇zE [Y |Z] B(Z)

]
defined below, B̂ = (β̂′Ex, β̂

′
End),

and G = (I,−I). Next, rewrite H0 : G′B = 0, and use the fact that B̂ d→ N (0, ΣE), where

ΣE is a variance covariance matrix that is straightforwardly derived from the theory below, in

particular theorem 3 (the subscript E is meant to denote endogeneity). Then, a Hausman-type

test statistic for H0, Γ̂1 =
(
G′B̂

)′ [
GΣ̂EG′

]−1 (
G′B̂

)
behaves asymptotically as follows:

Γ̂1 =
(
G′B̂

)′ [
GΣ̂EG′

]−1 (
G′B̂

)
d→ χ2

K . (5.1)

What would be the advantage of such a specification test? First, it has more power against

certain alternatives. Indeed, because of the parametric rate of all estimators, we may detect

local alternatives in the parameter vector that converge to H0 at root n. Therefore this test

will be superior, provided the misspecification due to endogeneity affects the index.

5.2 Testing for Heterogeneity under the Assumption of Endogeneity

The principle of comparing different coefficients as means for testing a hypothesis under our

specification can be maintained more generally. If we assume to be in the scenario with en-

dogenous regressors, we can test whether we have a heteroscedastic error or not. To illustrate

the main idea, suppose that V ⊥ Z, and hence, in the case of heteroscedasticity we know that

a sample counterpart to

β = E
[[

DzmX|Z(Z)′
]−∇zE

[
Ȳ |Z]

B(Z)
]
, (5.2)
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where Ȳ = k0.5
Y |Z,V (Z, V ) produces a root n consistent, asymptotically normal estimator regard-

less of heteroscedasticity of U , while a sample counterpart estimator based on

β = E
[[

DzmX|Z(Z)′
]−∇zE [Y |Z] B(Z)

]
,

will be inconsistent under heteroscedasticity. However, under H0 of homoscedasticity, we have

again that both estimators should vary only by sampling error. A straightforward test statistic

is suggested by the following reformulation of H0 :

0 = E
[[

DzmX|Z(Z)′
]−∇z

(
E

[
Ȳ − Y |Z])

B(Z)
]

= δ.

The theory of the obvious sample counterpart δ̂ = n−1
∑[

Dzm̂X|Z(Zi)
′]−∇zm̂Ȳ−Y |Z (Zi) B(Zi)

is a corollary to theorem 4. Specifically,
√

nδ̂
D−→ N (0, Σδ), where Σδ is defined as in equation

(4.4), safe for the fact that Ȳ is replaced by Ȳ −Y. A test statistic for heteroscedasticity is then

simply a Wald test of whether δ is greater than zero, i.e.

Γ̂het = δ̂′Σ̂−1
δ δ̂

D−→ χ2
K ,

where Σ̂δ is an estimator for Σδ, and this test statistic may be used to assess whether our model

is truly heteroscedastic.

5.3 Overidentification: Issue and Test

In the linear model, overidentification allows to delete instruments and recover β by various

different estimators that always only use a subset of instruments. In the (X, V ) projection of

the Blundell and Powell (2003) approach, as already noted by the authors a similar feature

is missing. In our setup it may be introduced, and the linear model result may be better

understood. We discuss in the following the full independence case, but all arguments may be

trivially extended to the heteroscedastic case random coefficients case.

If we return to the theorem 2 and the associated assumptions, we see that β would be

identified by taking the derivatives w.r.t. any subset of instruments Z1 such that Z = (Z ′
1, Z

′
−1)

′

and
[
Dz1mX|Z(z)Dz1mX|Z(z)′

]
would be nonsingular for all z ∈ B. by similar arguments as in

theorem 2, the following result holds:

β = E
[[

Dz1mX|Z(Z)′
]−∇z1E [Y |Z] B(Z)

]
. (5.3)

Consequently, the question of overidentification is not about exclusion of instruments in the

regression. Instead the question of overidentification is about exclusion of derivatives of

instruments, while the instruments should always be included in the regressions. Indeed, one

can show that otherwise a nonvanishing bias term of the form E [E [Y |Z] Qz1|Z1, V ], where
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Qz1 = ∇z1 log fZ−1|Z1V (Z−; Z1, V ), is obtained. Excluding instruments is only possible if they

can be excluded from both equation (using, say, a standard omission-of-variables test).

An overidentification test is straightforwardly constructed as in Hausman (1978): Suppose

M such partition of Z = (Z ′
1, Z

′
−1)

′ exist s.th. β is identified, which may be obtained by

successively deleting one or more derivatives in constructing the estimator, then we simply

compare their distance using some metric. The test would consider H0 : β(1) = β(2) = ... = β(M).

To this end, we determine the joint distribution of B =
(
β(1)′, β(2)′, ..., β(M)′)′. As a corollary

from the large sample theory of this paper, R′B = 0, B̂ d→ N (0, ΣI), where ΣI is a covariance

matrix with typical element Σjk. This element is given by

Σjk = E

(
3∑

l=1

σj
kσ

k′
k

)
+ 2E

(
σj

2σ
k′
3

)− ββ′

where for h = j, k.

σh
1 =

[
Dzh

mX|Z(Zi)
′]−∇zh

mY |Z(Zi)B(Zi)

σh
2 =

[
Dzh

mX|Z(Zi)
′]− fZ(Zi)

−1∇zh
fZ(Zi)V

′
i

[
Dzh

mX|Z(Zi)
′]−∇zh

mY |Z(Zi)B(Zi)

σh
3 =

[
Dzh

mX|Z(Zi)
′]− fZ(Zi)

−1∇zh
fZ(Zi)

(
Yi −mY |Z(Zi)

)
B(Zi)

Then,

Γ̂OvId =
(
R′B̂

)′ [
RΣ̂IR

′
]−1 (

R′B̂
) D−→ χ2

M−1,

by standard arguments.

6 Simulation

The finite sample performance of the estimators we propose is best analyzed by a Monte Carlo

simulation study. In this section, we are chiefly concerned with analyzing the behavior of β̂H .

The main scenario we consider involves an asymmetric error distribution, such that conditional

mean and median differ. Moreover, we assume that V in the IV equation is fully independent

of Z, in which case there is no correction term, and the estimator takes the convenient ratio-

of-coefficients form as in (4.3).

To obtain an idea of the behavior of our estimator, we analyze the performance of our

estimator at different data sizes. We find that our estimator performs well for even modest

data sizes, and as theory predicts, we find that the mean square error reduces as the sample

size increases, but we observe a moderate bias even with quite large sample sizes. However,

we establish that our estimator is superior to semiparametric estimators that do not account

for heterogeneity. As an example for an estimator that does not account for heterogeneity

we consider the full independence estimator β̂1. Moreover, we show that even an infeasible
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oracle estimator that uses some prior knowledge not available to the econometrician shows slow

convergence behavior in this setup, too.

We consider the case of one endogenous regressor, w.l.o.g. X1i, and denote the set of

regressors by Xi = (X1i, X2i, .., X5i)
′, and the set of all instruments Zi = (Z1i, X2i, ..., X5i)

′. For

the purpose of concreteness, we specify the DGP as the following 5 - dimensional regression:

Yi = I {β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + Ui > 0} ,

X1i = Z1i + Vi, i = 1, .., n,

where β = (1, 0.5, 0.5, 0.5, 0.5)′ and the data (Yi, Xi, Zi, Ui), i = 1, .., n, are iid draws from the

following distribution: For the error Ui, we assume that there is an omitted determinants called

Wi such that

(log(Wi), Zi)
′ v N (µ, Σ),

log(Vi)
′ v N (0, 1),

where

µ = 0, Σ =




2 1.5 0 0 0 0

1.5 2 1 1 1 1

0 1 2 1 1 1

0 1 1 2 1 1

0 1 1 1 2 1

0 1 1 1 1 2




,

and Vi is independent of (log(Wi), Zi)
′ . Observe that the Wi are in particular correlated with

Z1i. Next, the error Ui is defined through:

Ui = Wi − k0.5
W |Z(Zi) + Vi,

so that k0.5
U |ZV (Zi, Vi) = Vi. Hence, as we require the error Ui obeys the conditional median

exclusion restriction, but depends on Zi. As baseline, our estimator (4.3) is defined as a local

quartic polynomial estimator, with Epanechnikov kernels. Moreover, the “smooth indicator”

is defined as the integral of the Epanechnikov kernel over the positive areas. The conditional

probability is also estimated using a local quartic polynomial estimator, with Epanechnikov

kernel. The independence estimator β̂1 is defined similarly, with the exception that no “smooth

indicator” is required. The oracle estimator is obtained by using fitted values Y1i instead of

either the conditional median k0.5
Y |ZV (Zi, Vi) (as is the case in the β̂H) or the Yi (as is the case

in β̂1). The fitted values Y1i are obtained in the following way: We assume that the oracle has

knowledge of the (unobservable) Y ∗
i , and compute the conditional median k0.5

Y ∗|ZV (Zi, Vi), and
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set Y1i = I
{

k0.5
Y ∗|ZV (Zi, Vi) > 0

}
. Bandwidths for all estimators are obtained by doing a grid

search for the bandwidth that minimizes the MSE in 100 repetitions.

The result of applying our methods can be found in figures 1 - 3 in the graph appendix. For

each j = 1, .., J, J = 500, a new sample (Xi, Zi,Wi, Ui) of size n is drawn from the distribution

specified above. To illustrate the behavior of the estimator, in fig. 1 we plot the density of the

four estimated β (which in this case could have the local average structural effect interpretation,

as mentioned in the introduction), for n = 2500 as solid line. Note that the first coefficient

is normalized to one. The vertical line in all of these plots is at the true value of 0.5. The

closer this distribution is to a spike centered at this value, the better the performance of the

estimator. We compare it with the distribution of the estimated β if we erroneously use the

independence estimator (dotted line) and the oracle one (solid line).

Obviously, β̂H is less biased than β̂1, but more so than the oracle estimator, denoted β̂O,

while in terms of variance all three estimators are the same, see also the corresponding table

1 below. The fact that the variance is not significantly affected arises because due to the

discreteness of the problem, the median estimator in both cases still uses all observations.

It is interesting to see how the estimator behaves as n varies. The heteroscedasticity robust

estimator β̂H significantly outperforms β̂1 at moderate sample sizes (n = 2500); for smaller

sample sizes the advantage becomes less pronounced. As such we find the familiar results in

other simulation studies on the binary choice case (e.g., Frölich (2005)), namely that in binary

choice models semiparametric methods require a significant amount of data to outperform

misspecified models. Once however we have a significant amount of data, the advantages become

obvious, see fig.3 and 4, who show the behavior with n = 7500 and n = 15000 observations.

The bias of β̂H starts to vanish, quite nicely visible in the bottom right panel of fig. 4. The

same result is also obtained from the tables, cf tab 3-5 below.

The tables replicate the result from the figures. The heteroscedasiticy robust estimator

outperforms the independence estimator, the difference becomes more pronounced with in-

creasing sample size. This difference in reduction is due to the vanishing bias. The variance

remains roughly comparable between all three estimators. The specific numerical results are

the following: First, for β̂H ,

Coefficient 2 3 4 5

n = 2500 0.017288 0.015739 0.016421 0.016928

n = 7500 0.010301 0.009498 0.008755 0.008411

n = 15000 0.009207 0.008299 0.007690 0.007135

Table 1: MSE of β̂H at Different Data Sizes

The reduction of the MSE with increasing sample size is obvious. Note also that due to the

25



largely symmetric setup, all four coefficients are equally affected. A more detailed analysis

shows a reduction in both bias and variance, as is also evident from the graphs, see fig. 1-

3. Note, however, that the reduction in bias is quite slow. It is instructive to compare the

estimator with the Independence estimator, β̂1, and the Oracle estimator β̂O. For the former,

we obtain the following result:

Coefficient 2 3 4 5

n = 2500 0.020972 0.020581 0.020385 0.021524

n = 7500 0.017027 0.016416 0.015744 0.015766

n = 15000 0.016466 0.016306 0.015324 0.014847

Table 2: MSE of β̂I at Different Data Sizes

This result is clearly worse than the heteroscedasticity robust estimator β̂H , the MSE is roughly

25 - 40 % above that of the heteroscedasticity one. In contrast, as was to be expected, the

(infeasible) Oracle estimator β̂O.outperforms both estimators:

Coefficient 2 3 4 5

n = 2500 0.010615 0.009253 0.011056 0.009996

n = 7500 0.004054 0.004245 0.005386 0.005296

n = 15000 0.002875 0.002583 0.003155 0.002967

Table 3: MSE of β̂O at Different Data Sizes

When decomposing the MSE, we find that the variance remains very comparable across

all estimators given the data size, while it is the bias that causes the differences. While the

oracle estimator starts out unbiased, and remains so, the independence estimator contains

a nonvanishing bias component. The heteroscedastic estimator starts out with a bias that

diminishes with increasing sample size. Note that the difference between β̂H and β̂O can be

seen as a measure of the degree of information loss associated with the indicator function.

Viewing the indicator as a filter, we conclude that the information loss is quite severe, and that

significant data sizes are required to distinguish between different structure within the indicator.

Hence we tentatively conclude that correcting for endogeneity may have a larger effect than

modelling the heteroscedasticity structure in an unrestrictive fashion. Our application below,

however, will make the importance of being less restrictive in this part of the model quite clear.
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7 Application to Discrete Consumer Choice

7.1 Description of Data and Variables

As our motivation came in parts from the way heterogeneity is modelled in empirical industrial

organization, we use data that is very similar to the one employed in Goolsbee and Petrin

(2004) about the choice of television transmission mode, see Table A.1 for an overview of all

variables. The data comes from two data sources. First, from December 2000 until January

2001 NFO Worldwide fielded a household survey on television choices sponsored by Forrester

Research as part of their Technographics 2001 program5. These households were randomly

drawn from the NFO mail panel that is designed to be nationally representative.

The households that were surveyed basically have the choice between four different ways to

receive television programming: local antenna, direct broadcast satellite (DBS), as well as basic

and expanded cable, which we group into cable versus non-cable (satellite dish/local antenna).

Local antenna reception is free but only carries the local broadcast stations6. DBS systems are

national companies that deliver many of the cable channels that usually priced uniformly across

the whole country (in 2001 the two leading companies DirectTV and DISH Network (Echostar)

charged $30 and $32 per month respectively). Hence, there is almost no price variation in

the alternative for cable. Compared to cable, DBS provides a greater variety of channels and

more pay per view options but bares the potential for signal interference and also charges a

higher price. The fair amount of regional variation in cable prices permits us to estimate own

price effects, while the cross price effects are constant, and hence absorbed into an unidentified

constant.

Other than the choices people make, the survey also provides information on various socioe-

conomic household characteristics e.g. household income, household composition, education

of the head of household and if applicable of the respective partner. Dropping observations

with missing values in their choices or doubtful values in several household characteristics and

removing outliers (recall that we also have to compactify our support) reduces the sample to

approximately 15.900 observations. Table A.2 in the appendix provides summary statistics for

the sub sample including renter status and whether households live in single unit dwellings.

Both characteristics are known to influence the ability to receive satellite.

We also make use of a second source of data, which provides us with information on cable

prices and cable franchise characteristics each household faces (within a specific cable franchise

5NFO was the largest custom market-research firm in the United States until it became part of the TNS

Group in 2004.
6Looking at households that have a TV allows to assume that local antenna forms the chosen alternative for

those who neither declare to subscribe to cable nor to DBS.
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area). The data come from Warren Publishing’s 2002 Television and Cable Factbook, and

provides detailed information on the cable industry, which is divided into geographically sepa-

rated cable systems. From this data source, we use the channel capacity of the cable system,

whether pay per view is available, the price of basic plus expanded basic service, the price for

premium channels (here we use the price for HBO) and the number of over-the-air channels

(this corresponds to the number of local channels carried by the cable system).

To deal with endogeneity, we use variation in city franchise tax/fee to instrument cable

prices (recall that the own price might be correlated with unobserved cable characteristics

e.g. advertising or quality). Table A.3 presents summary statistic for the respective variables.

Technically, we can match both data sources using Warren’s ICA system identification number,

which bases on zip code information. Hence, we can assign a specific household to the adequate

local cable company7 even though these individuals might not subscribe to cable.

7.2 Empirical Results

The focus in our empirical analysis is on the (endogenous) own price effect, and how the result

is altered by introducing our method. The effect of household covariates is not of interested,

and these variables act merely as controls. Hence we use principal components to reduce

them to some three orthogonal approximately continuous variables, mainly because we require

continuous covariates for nonparametric estimation. While this has some additional advantages,

it is arguably ad hoc. However, we performed some robustness checks like alternating the

components or adding parametric indices to the regressions, and the results do not change in

an appreciable fashion (nor is the remaining variation statistically significant).

To show the performance of our estimator, it is instructive to start out with standard practise

of estimating a linear probability model and using 2SLS. We obtain the following result:

Estimate Std. Error t value p value

Intercept 0.697908 0.008805 79.266 0

Own Price 0.228026 0.020040 11.379 0

Income 0.028096 0.002513 11.181 0

PrinComp 1 - 0.025945 0.008904 - 2.914 0.003575

PrinComp 2 0.014143 0.004033 3.507 0.000454

PrinComp 3 - 0.018363 0.002663 - 6.895 0

Table 4: Linear Probability Model - 2SLS

7Typically only one cable company receives the right to serve a region as a result of a franchise agreement

with a local government even though the household might not subscribe to cable.
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There are two things noteworthy: First, quite in contrast to Economic theory, the model

predicts that higher own price is associated with higher demand. Second, the income effect is

positive, but small in absolute size. Due to the large sample size of n = 15.918 all variables

are highly significant, with p-values of virtually zero. This holds true even for the - in absolute

size - small income effect. This finding remains stable across specifications, however, the own

price effect becomes progressively more plausible as we move to less obviously misspecified

specifications.

The following tables show the behavior of the full independence estimator β̂1. Specifically,

it shows the point estimate, as well as the 2.5 and 97.5 quantile of the bootstrap distribution8

instead of the asymptotic distribution which is cumbersome to estimate. In this procedure, a

coefficient is statistically not significant from zero if the confidence interval contains zero.

Estimate BS 0.025 value BS 0.975 value

Own Price - 2.10788 - 5.94305 1.76096

Income 1 1 1

PrinComp 1 - 3.31908 - 4.32975 - 2.49948

PrinComp 2 1.70843 1.23556 2.35323

PrinComp 3 - 0.35490 - 1.15326 0.48962

Table 5: Coefficients of β̂1 (Relative to Income) with

Bootstrap Confidence Intervals

As we see from the results, this is the case for the own price effect, which is in absolute value

only twice as strong as the income effect. Compared to the income effect, the estimate points in

the opposite direction, and if we look at the non normalized results we also do obtain that the

income effect is positive (and actually of as small order of magnitude as in the linear probability

model), while the price effect is negative as it should be, but as mentioned insignificant. The

first two principal components are significant, however not the third, and have generally the

same sign and relative order of magnitude as in the linear probability model.

Finally, the heteroscedasticity robust estimator β̂H produces the most sensible results:

8We have performed n = 200 bootstrap repetitions with replacement from the same data. Since the choice

of bandwidth is not clear (we conjecture that a second order expansion type of analysis can be performed), we

have settled for a slightly smaller bandwidth, which is a common devise to mitigate small sample bias in the

construction of pointwise confidence bands in nonparametric regression.
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Estimate BS 0.025 value BS 0.975 value

Own Price - 8.02943 - 12.91400 - 2.90706

Income 1 1 1

PrinComp 1 - 0.12521 - 1.04786 0.52044

PrinComp 2 1.38809 0.93442 2.01614

PrinComp 3 - 0.88721 - 2.02577 - 0.08665

Table 6: Coefficients of β̂H (Relative to Income) with

Bootstrap Confidence Intervals

Here we see that the own price effect is significantly negative (again this effect is negative,

and the income effect is positive in the non normalized data) At first glance, the results appears

to be slightly different from Goolsbee and Petrin (2004), who find a relatively low elasticity.

However, as the income effect is rather weak (it is again of the same order of magnitude as

in the linear probability model in the non normalized version. but recall that identification is

only up to scale), this is not necessarily a contradiction. With respect to the application, we

conclude that the likelihood that the average person in this population chooses cable reacts only

modestly to an increase in income, which given the small fraction of total expenditures seems

plausible (and is perhaps very different if one considers the consumption of cars). However,

given that price of cable is a significant instrument also in the marketing of this good, the

average consumer seems to react more strongly to price incentives, and as theory predicts, a

price increase reduces the probability of buying cable.

With respect to the performance of various different estimators, we conclude that avoiding

the misspecification associated with the linear probability model, as well as allowing for hetero-

geneous preferences (compared to the full independence estimator β̂1) substantially alters the

result, and provides us with more plausible estimates for the (centrality) parameter of interest.

8 Summary and Outlook

The notion that we do not observe important determinants of individual behavior even in data

sets with large cross section variation becomes more and more influential across microecono-

metrics. Indeed, it is widely believed now that unobserved tastes and preferences account for

much more of the variation than observable characteristics. Hence, it is imperative to devise

models that account for heterogeneous individuals, in particular if the unobserved determinants

and omitted variables are believed to be correlated with observables.

The most important class of such models that have been employed in applied work on

discrete choices are random coefficient models. Most often, interest centers on average effects.
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In this paper, we analyze the random coefficient model under a median exclusion restriction that

defines such a (local) average effect. We show how to nonparametrically identify such an effect,

and we propose a
√

n consistent, asymptotically normal estimator. Moreover, based on our

theory, we propose tests for overidentification, endogeneity as well as heterogeneity. Therefore

we can provide means to check the specification, in addition to provide the first estimator for

this parameter in this class of models.

In a Monte Carlo study we show that our estimator performs superior to an estimator which

does not exploit the heterogeneity structure of the model. In an application, we show that our

estimator uses significantly weaker assumptions than those employed in the literature, and

through its use we may be able to reveal new and interesting features. How to extend this type

of semiparametric approach from binary choice data to multinomial choice data, which are also

frequently encountered in practise, remains an interesting direction for future research. Our

conjecture is that a similar estimation principle may be applicable to a large class of models.
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Appendix 1: Technical Proofs

Proof of the Identification Theorems

Proof of Theorem 1

To see the first statement, rewrite

Y = I {X ′β(A1) + A′
2γ(A1) > 0} = I{X ′β + X ′ (β(A1)− β) + A′

2γ(A1)︸ ︷︷ ︸
U

> 0}. (8.1)

Then we obtain that

k0.5
Y |XV (X,V ) = I

{
k0.5

Y ∗|XV (X,V ) > 0
}

= I{X ′β + k0.5
U |XV (X,V ) > 0}

Next, note that due to Z ⊥ (A, V ) =⇒ X ⊥ A|V, and thus E [C |X, V ] = E [C |V ] = g(V )

and E [B|X, V ] = E [B|V ]. Since (X,V,A2) ⊥ A1 =⇒ V ⊥ B, it moreover holds that

E [B|V ] = E [B], and the condition that (B,C) are jointly symmetrically distributed about

(β,E [C|V ]) conditional on (V, X) holds also conditioning on V only. Consequently, β =

E [B|V ] = E [β(A1)], and β is the mean of the distribution of random coefficients. Moreover,

k0.5
U |XV (X, V ) = E [X ′ (B− β) + C |X, V ] = X ′E [B− β|V ] + E [C |V ] = g(V ),

and a very similar argument holds to show that k0.5
U |ZV (Z, V ) = g(V ) as well.

To see equation (2.2), observe first that k0.5
U |ZV (Z, V ) = g(V ) implies that k0.5

U |XV (X, V ) =

g(V ). Start by using the definition of the median to obtain

P(U ≤ kα
U |Z,V (Z, V )|Z, V ) = 0.5 = P(U ≤ kα

U |X,V (X, V )|X, V ).

Taking conditional expectations with respect to (X, V ) on both sides produces

E
[
E

{
I
(
U ≤ kα

U |Z,V (Z, V )
) |Z, V

} |X,V
]

= P(U ≤ kα
U |X,V (X,V )|X,V ).

But due to kα
U |Z,V (Z, V ) = g(V ), and the law of iterated expectations, we have that

E [I (U ≤ g(V )) |X,V ] = P(U ≤ kα
U |X,V (X, V )|X, V ),

implying that kα
U |X,V (X, V ) = g(V ), provided U is continuously distributed.

Hence, if we assume the median exclusion restriction k0.5
U |ZV (Z, V ) = g(V ), we obtain that

∇xk
0.5
Y ∗|XV (X, V ) = β. Since Y ∗ = X ′β(A1) + A′

2γ(A1) = φ(X, A), and X ⊥ A|V , we can

apply Hoderlein and Mammen’s (2007) theorem to obtain that the (constant) derivative has

the following interpretation:

β = E
[
β(A1)|X = x, V = v, Y ∗ = k0.5

Y ∗|XV (x, v)
]
, (8.2)

for all (x, v) ∈ supp (X)× supp (V ). Q.E.D.
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Proof of Theorem 2

Ad (i).The case when Ṽ is independent of Z is already discussed in the main text.

Ad (ii). Next, consider the case defined by assumptions 8.2b: W.l.o.g, we consider two subsets

of the support of V , denoted S1 and S2. Then, let l ↗ on S1 = (−∞, a), ↘ on S2 = (a,∞)

with inverses l1, l2. Let ϑ(z)′β ≤ maxv∈S1 l(v) = l(a). Then,

mȲ |Z(z) = P [ϑ(Z)′β > l(V )|Z = z]

= P [ϑ(Z)′β > l(V ), V ∈ S1|Z = z] + P [ϑ(Z)′β > l(V ), V ∈ S2|Z = z]

= P [l1 (ϑ(Z)′β) > V ∧ a|Z = z] + P [l2 (ϑ(Z)′β) > V ∨ a|Z = z]

=

∫ l1(ϑ(z)′β)

−∞
fV |Z(v|z)dv +

∫ ∞

l2(ϑ(z)′β)

fV |Z(v|z)dv (8.3)

Taking derivatives by applying Leibnitz’ rule produces

∇zmȲ |Z(z) = Dzϑ(z)′β
[
∂l1
∂s

(ϑ(z)′β) fV |Z(l1(ϑ(z)′β)|z)− ∂l2
∂s

(ϑ(z)′β) fV |Z(l2(ϑ(z)′β)|z)

]

+

∫ l1(ϑ(z)′β)

−∞
∇z

[
log fV |Z(v|z)

]
fV |Z(v|z)dv

+

∫ ∞

l2(ϑ(z)′β)

∇z

[
log fV |Z(v|z)

]
fV |Z(v|z)dv

= Dzϑ(z)′β [· · · ] + E
{

Ỹ Qz (V ; Z) |Z = z
}

. (8.4)

where Qz (V ; Z) = ∇z

[
log fV |Z(V ; Z)

]
, and all the integrals on the right hand side of the first

and second equality exist by assumption 8.3b

Finally, consider the case defined by assumptions 8.2c. For simplicity, consider the two

dimensional case: V = (V1, V2), i.e., l(v) = av1 + bv2. Then,

mȲ |Z(z) = P [ϑ(Z)′β > aV1 + bV2|Z = z]

= P
[
V1 < a−1 (ϑ(Z)′β − bV2) |Z = z

]

=

∫ b−1ϑ(z)′β

−∞

∫ a−1(ϑ(z)′β−bv2)

−∞
fV |Z(v; z)dv1dv2 (8.5)

To handle this expression, we need the following auxiliary lemma. Observe that (U, V, X)

are any random variables here:

Lemma A.1: Let (U, V, X) (for simplicity) be random variables. Let the conditional density

of (U, V ) given X be denoted by f(u, v; x). Let

F (x) =

∫ α(x)

−∞

∫ β(x,v)

−∞
f(u, v; x)dudv.
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Then,

∂xF (x) =

∫ α(x)

−∞

∫ β(x,v)

−∞
∂xf(u, v; x)dudv + ∂xα(x)

∫ β(x,α(x))

−∞
f(u, α(x); x)du

+

∫ α(x)

−∞
∂xβ(x, v)f(β(x, v), v; x)dv.

Proof.

F (x + h) =

∫ α(x+h)

−∞

∫ β(x+h,v)

−∞
f(u, v; x + h)dudv

=

∫ α(x)+∂xα(x)h

−∞

∫ β(x,v)+∂xβ(x,v)h

−∞
[f(u, v; x) + ∂xf(u, v; x)h] dudv

+ O(h2)

=

(∫ α(x)

−∞
+

∫ α(x)+∂xα(x)h

α(x)

)(∫ β(x,v)

−∞
+

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

)
[f + ∂xfh] dudv

+ O(h2)

=

∫ α(x)

−∞

∫ β(x,v)

−∞
[f + ∂xfh] dudv +

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

[f + ∂xfh] dudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
[f + ∂xfh] dudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

[f + ∂xfh] dudv + O(h2)

= F (x) + h

∫ α(x)

−∞

∫ β(x,v)

−∞
∂xfdudv +

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

fdudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
fdudv + O(h2).

Since

lim
h→0

h−1

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
f(u, v; x)du

︸ ︷︷ ︸
B(x,v)

dv = ∂xα(x)B(x, α(x))
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and

lim
h→0

h−1

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

f(u, v; x)dudv

=

∫ α(x)

−∞
lim
h→0

h−1

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

f(u, v; x)dudv

=

∫ α(x)

−∞
∂xβ(x, v)f(β(x, v), v; x)dv,

the assertion follows. Q.E.D.

Adapting this result to our scenario produces

∇zmȲ |Z(z) = a−1β

[∫ b−1ϑ(z)′β

−∞
fV |Z(a−1 (ϑ(z)′β − bv2) , v2; z)dv2

]

+

∫ b−1ϑ(z)′β

−∞

∫ a−1(ϑ(z)′β−bv2)

−∞
∇z

[
ln fV |Z(v1, v2; z)

]
︸ ︷︷ ︸

Qz(v1,v2;z)

fV |Z(v1, v2; z)dv1dv2

Finally, the 2nd term may be written
∫ ∞

−∞

∫ ∞

−∞
1{−∞≤v1≤a−1(ϑ(z)′β−bv2),−∞≤v2≤b−1ϑ(z)′β}Qz(v1, v2; z)fV |Z(v1, v2; z)dv1dv2 (8.6)

=

∫ ∞

−∞

∫ ∞

−∞
1{av1+bv2≤ϑ(z)′β}Qz(v1, v2; z)fV |Z(v1, v2; z)dv1dv2

= E [Y Qz(V ; Z)|Z = z] ,

which shows the statement.

Ad iii. In the case of U ⊥ V |Z,

Y̆ = E [Y |Z, V ] = FU |V (ϑ(Z)′β + V ′β, V ),

provided assumption 6 holds. Next, we apply a similar logic as in the previous subsection, with

Y̆ in place of Ȳ . However, due to the law of iterated expectations, we have that E
[
Y̆ |Z

]
=

E [Y |Z]. Hence, E [Y |Z] = E
[
FU |V (ϑ(Z)′β + V ′β, V )|Z]

, and

∇zmY |Z(z) = E
[
fU |V (ϑ(Z)′β + V ′β, V )|Z = z

]
Dzϑ(z)′β + E [Y Qz(V, Z)|Z = z] ,

where Qz(v, z) = ∇z log fV |Z(v; z), for all z ∈ B, due to differentiability and domination assump-

tions 4. Rearranging terms, and premultiplying with B(Z) and taking expectations produces

(3.9) up to a constant of scale. This expectation exists again under the elementwise square

integrability of all functions on B (assumption 4). Note that the right hand side of (3.9) may

be rewritten as (3.10), using the law of iterated expectations. Q.E.D.
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The Proof of Theorem 3

The Structure of the Proof

Neglect for a moment the weighting function A. Rewrite (4.6) as 1
n

∑
i Ĝ

−
i B̂i, where Gi =

DzmX|Z(Zi)
′, Bi = ∇zmY |Z(Zi), Ĝi = Dzm̂X|Z(Zi)

′ and B̂i = ∇zm̂Y |Z(Zi). Tedious, but

straightforward manipulations lead to

Ĝ−
i B̂i = G−

i Bi + G−
i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]

+G−
i (Gi − Ĝi)

(
G−

i − Ĝ−
i

)
Bi

+G−
i (Gi − Ĝi)G

−
i (B̂i −Bi) (8.7)

+G−
i (Gi − Ĝi)

(
G−

i − Ĝ−
i

)
(B̂i −Bi).

Now, in (8.7) the first two terms on the right hand side will provide us with the asymptotic

distribution, while the terms from three to five will prove asymptotically negligible. In Step 1,

we treat the behavior of the first two summands first in the case where ϑ is a mean regression.

Specifically, we show in Step 1a that

τ1n = n−1
∑

i

G−
i Bi + G−

i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]
= S1n + S2n

i.e., the sum can be decomposed into two terms, the first of which provides us with the asymp-

totic distribution, while the second one produces the bias. In Step 1b, we establish that the

large sample theory of S1n may be handled using projection arguments coming from U -statistic

theory, while in Step 1c we show that the bias term S2nwill vanish under appropriate condi-

tions on the bandwidths, as in PSS. Finally, in Step 1d we derive the asymptotic distribution.

In Step 2, we discuss the behavior of the higher order terms in (8.7), i.e., the behavior of terms

three to five. In Step 3 we establish under which conditions generated dependent variables do

not matter for the asymptotic distribution of the estimator.

Step 1: The General Proof

Step 1a: Consider

τ1n = n−1
∑

i

{
G−

i Bi + G−
i (Gi − Ĝi)G

−
i Bi + G−

i (B̂i −Bi)
}

(8.8)

= n−1
∑

i

G−
i Bi + n−1

∑
i

G−
i (Gi − Ĝi)G

−
i Bi + n−1

∑
i

G−
i (B̂i −Bi). (8.9)

Since the first term has a trivial structure, and the second and third terms are similar, we start

by considering the second term on the right hand side of (8.8) first. In the case where Ĝi is a
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nonparametric Nadaraya Watson derivative estimator, it rewrites as

(∑

j 6=i

Khj(Zi)

)−1

∑

j 6=i

∇zKhj(Zi)X
′
j −

(∑

j 6=i

Khj(Zi)

)−1 ∑

j 6=i

∇zKhj(Zi)
∑

j 6=i

Khj(Zi)X
′
j


 .

(8.10)

Hence, Gi − Ĝi has a representation as

DzmX|Z(Zi)−
(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)]
[
V ′

j + mX|Z(Zj)
′]
]

where

Wn(Zi) =

(∑

s6=i

Khs(Zi)

)−1 ∑

j 6=i

∇zKhs(Zi).

Separate this expressions into the two parts, where

−P1i =

(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] V
′
j

]
(8.11)

= (n− 1)−1
∑

j 6=i

Wjn(Zi)V
′
j

where Wjn(Zi) =
(
(n− 1)−1 ∑

j 6=iKhj(Zi)
)−1

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] and

P2i = DzmX|Z(Zi)
′ −

(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] mX|Z(Zj)
′
]

(8.12)

= DzmX|Z(Zi)
′ − (n− 1)−1

∑

j 6=i

Wjn(Zi)mX|Z(Zj)
′

Note that Wjn(Zi) = −Win(Zj) by the symmetry of the kernel. The first part, (8.11), will

contribute to the variance of the estimators, whereas the second will be produce the leading

bias term for which we shall give conditions under which it vanishes. Rewriting

n−1
∑

i

G−
i (Gi − Ĝi)G

−
i Bi = − (n (n− 1))−1

∑
i

∑

j 6=i

G−
i Wjn(Zi)V

′
j G

−
i Bi

+ (n (n− 1))−1
∑

i

G−
i P2iG

−
i Bi

= S2
1n + S2

2n,

where the superscript 2 denotes the second term in the expression (8.8). A similar decomposi-

tion may be performed on n−1
∑

i G
−
i (B̂i −Bi) = (n (n− 1))−1 ∑

i

∑
j 6=i G

−
i Wjn(Zi)Qj+

(n (n− 1))−1 ∑
i G

−
i P4i = S3

1n+S3
2n, where Qi = Yi−mY |Z(Zi) and P4i denotes again bias terms

in the regression of Y on Z. In total, we obtain that

τ1n = n−1
∑

i

G−
i Bi + S2

1n + S3
1n + S2

2n + S3
2n = S1n + S2n, (8.13)
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where S1n = n−1
∑

i G
−
i Bi +S2

1n +S3
1n collects all terms that affect the asymptotic distribution,

while S2n = S2
2n + S3

2n are all bias terms that vanish under appropriate conditions.

Step 1b: To analyze all terms that affect the distribution and are contained in S1n, consider

S2
1n first. Manipulating this expression produces

Un = (n (n− 1))−1
∑

i

∑
j>i

{
G−

i Wjn(Zi)V
′
j G

−
i Bi −G−

j Wjn(Zi)V
′
i G

−
j Bj

}

= (n (n− 1))−1
∑

i

∑
j>i

pn(Si, Sj),

where Si = (Yi, X
′
i, Z

′
i)
′, with pn symmetric, and we made use of Wjn(Zi) = −Win(Zj). To

apply Lemma 3.1 of PSS which yields
√

n
(
Ûn − Un

)
= op(1), where

Ûn = θ + n−1
∑

i

E [pn(Si, Sj)|Si] , (8.14)

we require that E
(‖pn(Si, Sj)‖2) = o(n). Following similar and straightforward, but more

tedious arguments as in PSS, this is the case provided nhL+2 → ∞. To analyze (8.14), note

first that θ = E [pn(Si, Sj)] = 0, and consider first p∗n which equals pn save that in Wjn(Zi),

(n− 1)−1 ∑
s 6=iKhs(Zi) and (n− 1)−1 ∑

s6=i∇zKhs(Zi) are replaced with their probability limits,

fZ(Zi).and ∇zfZ(Zi). Then,

E [p∗n(Si, Sj)|Si = si]

=

∫
h−(L+1)(DzmX|Z(zi)

−fZ(zi)
−1

(∇zK((zi − z) /h)−∇zfZ(zi)fZ(zi)
−1hK((zi − z) /h)

)

×v′iDzmX|Z(zi)
−∇zmY |Z(zi)fZ(z)dz

= DzmX|Z(zi)
−fZ(zi)

−1

∫
h−1∇zK(ψ)fZ(zi + ψh)dψv′iDzmX|Z(zi)

−∇zmY |Z(zi) (8.15)

−DzmX|Z(zi)
−fZ(zi)

−2∇zfZ(zi)

∫
K(ψ)fZ(zi + ψh)dψv′iDzmX|Z(zi)

−∇zmY |Z(zi)

= −DzmX|Z(zi)
−fZ(zi)

−1∇zfZ(zi)v
′
iDzmX|Z(zi)

−∇zmY |Z(zi) + η2i

= −g−i fZ(zi)
−1∇zfZ(zi)v

′
ig
−
i bi + η2i,

where η2i denotes higher order terms, for which, by standard arguments n−1/2
∑

i η2i = op(1)

(Here we use g−i , bi to denote G−
i , Bi at a fixed position zi. We will now that we may replace

pn by p∗n at the expense of a higher order term that vanishes as well (under boundedness

assumptions on the densities), i.e.,

n−1/2
∑

i

E [pn(Si, Sj)− p∗n(Si, Sj)|Si] = op(1).
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To see this, consider a typical expression in E [pn(Si, Sj)− p∗n(Si, Sj)|Si] . Using the right hand

side of the third equality in equation (8.15),

ρni = DzmX|Z(zi)
−

{
f̂Z(zi)

−1 − fZ(zi)
−1

}
∇zfZ(zi)v

′
iDzmX|Z(zi)

−∇zmY |Z(zi)

=
{

fZ(zi)− f̂Z(zi)
}

f̂Z(zi)
−1DzmX|Z(zi)

−fZ(zi)
−1∇zfZ(zi)v

′
iDzmX|Z(zi)

−∇zmY |Z(zi),

where f̂Z(zi) = (n− 1)−1 ∑
s6=iKhs(Zi). Next, write

n−1/2
∑

i

ρni = n1/2

∫
fZ(z)− f̂Z(z)

f̂Z(z)
χ(z, v)F̂ZV (dz, dv), (8.16)

where χ(z, v) = DzmX|Z(z)−fZ(z)−1∇zfZ(z)v′DzmX|Z(z)−∇zmY |Z(z), and F̂ZV denotes the

empirical cdf. Considering the denominator in (8.16), observe that

1∣∣∣fZ(z) + f̂Z(z)− fZ(z)
∣∣∣
≤ 1

|fZ(z)| −
∣∣∣f̂Z(z)− fZ(z)

∣∣∣
≤ 2

b
, (8.17)

since fZ(z) ≥ b by the assumption that Z is continuously distributed RV on B, with density

bounded away from zero. Moreover,
∣∣∣f̂Z(z)− fZ(z)

∣∣∣ ≤ b/2 with probability going to one,

as f̂Z(z) is consistent by assumptions on kernels and bandwidths. Hence, n−1/2
∑

i ρni is, in

absolute value, bounded by

c sup
z∈B

∣∣∣fZ(z)− f̂Z(z)
∣∣∣ n−1/2

∑
i

|χ(Zi, Vi)| , (8.18)

But since n−1/2
∑

i |χ(Zi, Vi)| converges by a standard CLT for iid random variables to a normal

limit (provided the second moment are finite which we tacitly assume), and sup
z∈B

∣∣∣fZ(z)− f̂Z(z)
∣∣∣ =

Op

(
h2r +

(
nhL

)−1/2
log n

)
= op(1) under general conditions, it follows that n−1/2

∑
i ρni =

op(1). Similar arguments can be applied to any other term appearing in E [pn(Si, Sj)− p∗n(Si, Sj)|Si] ,

implying that the difference vanishes.

Repeating the same arguments as from the start of Step 1b, we can show that G−
i (B̂i −Bi) =

G−
i fZ(Zi)

−1∇zfZ(Zi)Qi + η3n, where Qi = Yi −mY |Z(Zi). Returning to (8.13)

S1n = n−1
∑

i

{
G−

i Bi + G−
i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]}

= n−1
∑

i

{
G−

i Bi −G−
i fZ(Zi)

−1∇zfZ(Zi)V
′
i G

−
i Bi −G−

i fZ(Zi)
−1∇zfZ(Zi)Qi

}
+ n−1

∑
i

T3i,

where and T3i denotes all higher order terms that. Note that
√

n [n−1
∑

i T3i] = op(1), by

arguments above..
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Step 1c: To analyze all terms that affect the distribution and are contained in S2n, consider

S2
2n first. More specifically,

S2
2n = n−1/2

∑
i

G−
i

{
DzmX|Z(Zi)

′ − (n− 1)−1
∑

j 6=i

Wjn(Zi)mX|Z(Zj)
′
}

G−
i Bi

=
√

n

∫ ∫ [
DzmX|Z(ζ)′

]−

×





DzmX|Z(ζ)′ −


h−L−1∇zK ((z − ζ)/h)

f̂Z(ζ)
− ∇zf̂Z(ζ)h−LK ((z − ζ)/h)(

f̂Z(ζ)
)2


 mX|Z(z)′





× [
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)F̂Z(dz)F̂Z(dζ).

Next, let S2
2n = A1 +ωn where A1 equals S2

2n with the exception that we replace F̂Z by FZ , and

we replace f̂Z(ζ) by fZ(ζ). Hence we get a remainder term that contains expressions of the

form F̂Z −FZ and f̂Z(ζ)− fZ(ζ). In the case of the replacement of F̂Z by FZ , we can appeal to

Glivenko-Cantelli together with the fact that B is compact, and by arguments as in equations

(8.16) and (8.17), we can show that ωn = op (A1), so that we focus on the leading term A1.

After change of variable, this is

√
n

∫ [
DzmX|Z(ζ)′

]− {DzmX|Z(ζ)′ −

×
∫

h−1∇ψK (ψ)

fZ(ζ)
mX|Z(ψh + ζ)′fZ(ψh + ζ)dψ −

∫ ∇zfZ(ζ)K (ψ)

(fZ(ζ))2 mX|Z(ψh + ζ)′fZ(ψh + ζ)dψ}

× [
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)fZ(ζ)dζ.

Then make use of partial integration and apply a standard Taylor expansion, to obtain that

A1 =
√

n

∫ [
DzmX|Z(ζ)′

]−
BX(ζ)

[
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)fZ(ζ)dζ + O(
√

nhr). (8.19)

where denotes higher order bias terms, i.e. BX(ζ) =
∑

l=1..,r µkh
lBXl(ζ), and BXl(ζ) contains

sums of products of all higher order derivatives of mX|Z and fZ , where the order of the product

of derivatives combined is at most of order l + 1. The expectations of these terms exist due

to assumption 9, and provided that r = 2L in connection with assumption 11. Consequently,
√

nS2
2n = op(1). Under samilar conditions on BY (ζ) (cf. assumption 9), and by similar argu-

ments
√

nS2
3n = op(1) and hence the bias expression proves asymptotically negligible under our

assumptions.

Step 1d: Finally, the first terms provide us with the variance. Since E[ (V ′
i , Qi)

′ |Zi] = 0, σ1i

is uncorrelated with σ2i and σ3i. The result follows by application of a standard central limit

theorem. Q.E.D.
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Step 2: The Behavior of Higher Order Terms

The characteristic feature of all terms in the expansion is that they involve higher powers in

Gi − Ĝi or B̂i − Bi. Intuitively, what happens is that these terms will add a factor that tends

to zero faster as the variance terms cancel, and the term is of the order of the squared bias

terms. To fix ideas, recall that Bi = ∇zmY |Z(Zi) and consider

n−1/2
∑

i

G−
i (Gi − Ĝi)(B̂i −Bi)

= n1/2

∫
G−

i

(
mX|Z(z)′ −Dzm̂X|Z(z)′

) (∇zm̂Y |Z(z)−∇zmY |Z(z)
)
F̂Z(dz).

The expression on the right hand side is in absolute value bounded by

n1/2sup
z∈B

∣∣DzmX|Z(z)′ −Dzm̂X|Z(z)′
∣∣ sup

z∈B

∣∣∇zm̂Y |Z(z)−∇zmY |Z(z)
∣∣n1/2

∫ ∣∣G−
i

∣∣ F̂Z(dz)
︸ ︷︷ ︸

Cn

Since sup
z∈B

∣∣DzmX|Z(z)′ −Dzm̂X|Z(Z)′
∣∣ sup

z∈B

∣∣∇zm̂Y |Z(z)−∇zmY |Z(z)
∣∣ = Op(h

2r+
(
nhL+2

)−1
ln(n))

by an extensions to a theorem of Masry (1994), and Cn converges to a nondegenerate random

variable, provided that the second moment of G−
i is finite (which is implied by assumption 3),

this term is op(1) under general conditions. Materially similar, yet more involved arguments

can be used to establish the assertion for the other higher order terms, using assumptions 3

and 4. Q.E.D.

Step 3: Modifications with Generated Dependent Variables - Theorem 4

To have an idea why T2n and T3n vanish, consider first T2n in Step 3a, and then T3n in Step 3b.

Step 3a: Recall that

T2n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj).

As before, we analyze this expression in several steps. We start by considering

T ∗
2n = n−1

∑
i

[
DzmX|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj),

and note that T2n = T ∗
2n+Rn, where Rn contains the difference

[
Dzm̂X|Z(Zi)

′]−−[
DzmX|Z(Zi)

′]−

instead of
[
DzmX|Z(Zi)

′]− . As is easy to see (given the discussion above), Rn produces a faster

vanishing higher order bias term. Quite obviously, this expression has a similar structure as

the one analyzed in Step 1b above, safe for the fact that Yj is replaced by K {(Pj − 0.5) /h} −
I {Pj < 0.5} . Following the same argumentation as the one in Step1c, we arrive at the crucial
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decomposition T ∗
2n = T ∗∗

2n + %n, where %n are terms that converge faster by Glivenko-Cantelli

and compact support B, and T ∗∗
2n is defined as follows:

T ∗∗
2n

=

∫ ∫ ∫
h−(L+1)(DzmX|Z(ζ)−fZ(ζ)−1

(∇ζK((z − ζ) /h)−∇zfZ(ζ)fZ(ζ)−1hK((ζ − z) /h)
)

× [K {(p− 0.5) /h} − I {p < 0.5}] DzmX|Z(ζ)−∇zmY |Z(ζ)FPZ(dp, dz)FZ(dζ)

=

∫
g(ζ)

∫ ∫
h−1∇ψK(ψ) [K {(p− 0.5) /h} − I {p < 0.5}] fZ(ζ + ψh)FP |Z(dp; ζ + ψh)dψ ×

DzmX|Z(ζ)−∇zmY |Z(ζ)− g(ζ)∇zfZ(ζ)

∫ ∫
K(ψ) [K {(p− 0.5) /h} − I {p < 0.5}]×

fZ(ζ + ψh)FP |Z(dp; ζ + ψh)dψg(ζ)∇zmY |Z(ζ)FZ(dζ)

= Q1n −Q2n,

where g(ζ) = DzmX|Z(ζ)−fZ(ζ)−1. Next, consider the inner integral in Q1n:

h−1

∫ ∫
∇ψK(ψ)K {(p− 0.5) /h} fZ(ζ + ψh)dFP |Z(dp; ζ + ψh)dψ

−h−1

∫ ∫
∇ψK(ψ)I {p < 0.5} fZ(ζ + ψh)dFP |Z(dp; ζ + ψh)dψ

= h−1

∫ ∫
∇ψK(ψ)K(τ)FP |Z(0.5 + hτ ; ζ + ψh)fZ(ζ + ψh)dτdψ (8.20)

−h−1

∫
∇ψK(ψ)FP |Z(0.5; ζ + ψh)fZ(ζ + ψh)dψ,

where we made use of Fubini’s theorem in connection with standard arguments for integrals of

kernels. Next, use integration by parts to obtain that the rhs of (8.20) equals
∫
K(ψ)∇ψ

[
FP |Z(0.5; ζ + ψh)fZ(ζ + ψh)

]
dψ (8.21)

−
∫
K(ψ)

∫
K(τ)∇ψ

[
FP |Z(0.5 + hτ ; ζ + ψh)fZ(ζ + ψh)

]
dτdψ

Inserting FP |Z(0.5 + hτ ; ζ + ψh) = FP |Z(0.5; ζ + ψh) + hτfP |Z (0.5; ζ + ψh) + ...

+ (r1!)
−1 hr1τ r1∂r1−1

p fP |Z (0.5 + λhτ ; ζ + ψh), where λ ∈ (0, 1), we obtain that (8.21) reduces,

under the familiar assumption on all moments of the kernel up to order r1 to be zero to

−
∫
K(ψ) (r1!)

−1 hr1µr1∇ψ∂r1−1
p fPZ (0.5; ζ + ψh) dψ,

plus a term of smaller order. Applying standard arguments, in particular expand ∂r1−1
p fP |Z (0.5; ζ + ψh)

in ψ, we obtain that
√

nT ∗∗
2n = op(1), provided that

√
nhr1hr = o(1). The same argumentation

holds for Q2n.

Step 3b: Next, consider

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)
[
K

{
(P̂j − 0.5)/h

}
−K {(Pj − 0.5) /h}

]
B(Zj),
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we can rewrite the last term on the right hand side as:

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)h
−1K {(Pj − 0.5) /h}

(
P̂j − Pj

)
B(Zj) + R1n

= T4n + R1n,

where R1n denotes higher order terms in a mean value expansion, and Rn = op(T4n). Using again[
Dzm̂X|Z(Zi)

′]− =
[
DzmX|Z(Zi)

′]− +
[[

Dzm̂X|Z(Zi)
′]− − [

DzmX|Z(Zi)
′]−]

, which produces a

leading term T5n and again a faster converging remainder, we find that

√
nT5n

= n−1/2
∑

i

[
DzmX|Z(Zi)

′]− n−1
∑

j 6=i

∇z
h−L−2K ((Zj − Zi)/h)

f̂Z(Zi)
K ((Pj − 0.5) /h)

(
P̂j − Pj

)

=
√

n

∫ ∫ [
DzmX|Z(z)′

]−
h−2

∫
∇ψ

K (ψ)

f̂Z(z)
K1((p(z + ψh1, $)− 0.5) /h)

×(p̂(z + ψh1, $)− p(z + ψh1, $))fZV (z + ψh,$)dψd$FZ(dz)

=
√

n

∫ ∫ [
DzmX|Z(z)′

]−
h−2f̂Z(z)−1 ×

∇z [K1((p(z,$)− 0.5) /h)(p̂(z, $)− p(z, $))fZV (z,$)] d$FZ(dz) + ρn

= T6n + ρn,

where ρn = op(T6n). Hence,
√

nT5n is bounded in absolute value by

c1 sup
z,v∈B×V

|∇zp̂(z, v)−∇zp(z, v))| b1n + c2 sup
z,v∈B×V

|p̂(z, v)− p(z, v))| b2n, (8.22)

where b1n = n−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]− K1((p(Zi, Vi)− 0.5) /h1)fZV (Zi, Vi)
∣∣∣ and

b2n = n−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]−∇z [K1((p(Zi, Vi)− 0.5) /h1)fZV (Zi, Vi)]
∣∣∣ converge to nonde-

generate distributions. To see this, pick b1n = h
1/2
1 (nh1)

−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi)×
K1((Pi − 0.5) /h1) = h

1/2
1 b3n, where b3n is a nonparametric estimator of

E
[∣∣∣

[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi)|Pi = 0.5
]
fP (0.5).

Observe that b3n converges to a nondegenerate limiting distribution provided that the second

moment of
∣∣∣
[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi) exist. But this follows by elementwise square integra-

bility in assumption 3, together with the boundedness assumption 14. Hence,

c1 sup
z,v∈B×V

|∇zp̂(z, v)−∇zp(z, v))| b1n = op(1).

Similar arguments can be made for the second summand in (8.22), using the boundedness

of the derivatives in assumption 14. Consequently,
√

nT5n = op(1), implying that
√

nT3n =

op(1). Q.E.D.
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Appendix 2: Graphs and Tables

Table A.1: Variables in Data Set

1 dma dma code, code for television market

2 income household income in $

3 owncable does household have cable TV

4 ownsat does household have satellite TV

5 cableco cable company

6 age what range best describes your age

7 hhsize household size

8 hhcomp household composition

9 educ education

10 hisp hispanic or not

11 single single or couple

12 state

13 rent renter status (do they rent or own the house)

14 typeres type of residence (house, apartment, condominium)

15 angle dish angle

16 avgpbi instrument, average price of basic cable across other cable franchises

17 avgppi same for premium

18 tvsel1 tv choice (1: basic cable, 2: premium cable, 0: nothighTV, 3 or 4: satellite)

19 yearst year established (satellite dish)

20 chancap channel capacity

21 airchan number of over the air-channels available

22 paychan number of pay channels available

23 othchan other channels

24 ppv pay per view available

25 cityff city fixed fee (tax)

26 pricebe price of basic cable

27 gender gender

28 varelev variance of the local terrain and the average elevation
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Table A.1: Variables in Data Set(cont.)

29 mild local weather index

30 bright local weather index

31 stable local weather index

32 climate local weather index

33 twoway cable franchise char - probably whether signals can be sent both ways

34 hboprice HBO price

35 density population density in an area (city density)

36 cnts number of sampled households in that cable franchise market

37 poprank city code (market area: necessary to merge with damachers, cable98)
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Table A.2 Summary Statistics for Forrester Data

Mean Std. Dev. 25% 50% 75%

Satellite 0.10 0.30 0.00 0.00 0.00

Cable 0.72 0.45 0.00 1.00 1.00

Household income in $ 57,366 28,642 32,500 55,000 87,500

Rent 0.22 0.42 0.00 0.00 0.00

Single unit dwelling 0.78 0.41 1.00 1.00 1.00

Household size 2.16 1.88 1.00 1.00 3.00

Single 0.18 0.38 0.00 0.00 0.00

Age of HH 50.59 15.42 39.00 49.00 61.00

Education in years 14.06 2.69 12.00 13.00 16.00

The education level corresponds to the mean education in a non-single household.

Table A.3 Summary Statistics for Warren’s Factbook Data

Mean Std. Dev 25% 50% 75%

Monthly cable price in $ 25.45 8.39 20.88 24.43 29.95

HBO price in $ 11.13 1.51 9.95 10.95 12.45

Channel capacity 65.36 17.44 54.00 62.00 78.00

Pay-per-view available 0.92 0.26 1.00 1.00 1.00

Year franchise began 1974.94 9.82 1971 1976 1982

City franchise fee 4.06 1.55 3.00 5.00 5.00

Number of over-the-air channels 11.46 3.38 8.00 12.00 14.00

Observations 132
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Fig. 1: Comparison of Estimators for Centrality Parameter 

Heteroscedasticity Robust (Solid Line)
Independence (Dotted Line)

Oracle (Broken Line)

Kernel Estimate of Density of Estimator

n = 2500



0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

Coefficient 2

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

Coefficient 3

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

Coefficient 4

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

Coefficient 5

D
en

si
ty

Fig. 3: Comparison of Estimators for Centrality Parameter 

Heteroscedasticity Robust (Solid Line)
Independence (Dotted Line)

Oracle (Broken Line)

Kernel Estimate of Density of Estimator

n = 7500
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Fig. 4: Comparison of Estimators for Centrality Parameter 

Heteroscedasticity Robust (Solid Line)
Independence (Dotted Line)

Oracle (Broken Line)

Kernel Estimate of Density of Estimator

n = 15000
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