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Abstract

This paper considers instrumental variable regression with a single endogenous variable

and the potential presence of weak instruments. I construct confidence sets for the coefficient

on the single endogenous regressor by inverting tests robust to weak instruments. I suggest a

numerically simple algorithm for finding the Conditional Likelihood Ratio (CLR) confidence

sets. Full descriptions of possible forms of the CLR, Anderson- Rubin (AR) and Lagrange

Multiplier (LM) confidence sets are given. I show that the CLR confidence sets have nearly

shortest expected arc length among similar symmetric invariant confidence sets in a circular

model. I also prove that the CLR confidence set is asymptotically valid in a model with

non-normal errors.
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1 Introduction

This paper considers confidence sets for the coefficient β on the single endogenous

regressor in an instrumental variable (IV) regression. A confidence set provides in-

formation about a range of parameter values compatible with the data. A good

confidence set should adequately describe sampling uncertainty observed in the data.

In particular, a confidence set should be large, possibly infinite (in the case of un-

bounded parameter space), if the data contains very little or no information about

a parameter. In many empirically relevant situations, the correlation between the

instruments and the endogenous regressor is almost indistinguishable from zero (so

called weak instruments case), and little or no information about β can be extracted.

When instruments can be arbitrary weak a confidence set with correct coverage prob-
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ability must have an infinite length with positive probability (Gleser and Hwang

(1987), Dufour (1997)). Most empirical applications use the conventional Wald con-

fidence interval, which is always finite. As a result, the Wald confidence interval has

a low coverage probability (Nelson and Startz (1990)) and should not be used when

instruments are weak (Dufour (1997)).

To construct a confidence set robust to weak instruments, one can invert a test

which has the correct size even when instruments are weak (Lehmann (1986)). Namely,

a confidence set with correct coverage can be constructed as the set of β0 for which

the hypothesis H0 : β = β0 is accepted. The idea of inverting robust tests in the

context of IV regression was first proposed by Anderson and Rubin (1949) and has

recently been used by many authors, including Moreira (2002), Stock, Wright and

Yogo (2002), Dufour, Khalaf and Kichian (2005), and Kleibergen and Mavroeidis

(2009). The class of tests robust to weak identification includes but is not limited

to the Anderson and Rubin (1949) (AR) test, the Lagrange multiplier (LM) test

proposed by Kleibergen (2002) and Moreira (2002), and the Conditional Likelihood

Ratio (CLR) test suggested by Moreira (2003).

This paper has three main goals. The first is to compare the CLR, AR, and LM

confidence sets using accuracy and length as criteria. The second goal is to provide

a practitioner with simple and fast algorithms for obtaining these confidence sets;

currently a fast inversion algorithm exists for AR but not for the CLR or the LM. Last

but not least, I prove that the confidence sets mentioned above have asymptotically

correct coverage; this entails a non-trivial extension of point-wise validity arguments

in the literature to uniform validity.

Accuracy of a confidence set is defined as the probability of excluding false val-

ues of the parameter of interest. A uniformly most accurate (UMA) confidence set

maximizes the probability of excluding each false value. A UMA confidence set cor-

responds to a uniformly most powerful (UMP) test and vice versa. Practitioners

are usually more interested in another criterion, the expected length. According to

Pratt’s (1961) theorem (also see Ghosh (1961)), the expected length of a confidence

set equals the integral over false values of the probability that each false value is in-
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cluded. If the expected length is finite, then a UMA confidence set is of the shortest

expected length.

Andrews, Moreira and Stock (2006) show that the CLR test is nearly UMP in the

class of two-sided similar tests invariant with respect to orthogonal transformations

of instruments. This suggests that a confidence set corresponding to the CLR test

may possess some optimality properties with respect to length. There are, however,

two obstacles in applying Pratt’s theorem directly. First, the expected length of a

confidence set with correct coverage in the case of weak instruments must be infinite.

Second, the CLR does not maximize power at every point, rather it nearly maximizes

the average power at two points lying on different sides of the true value. The locations

of the points depend on each other, but they are not symmetric, at least in the native

parametrization of the IV model.

The reasons stated above prevent establishing “length optimality” of the CLR

confidence set in the native parametrization. However, in a circular version (re-

parametrization into spherical coordinates) of the simultaneous equation model con-

sidered in the statistics literature by Anderson (1976), and Anderson, Stein and Za-

man (1985) and suggested in the present context by Hillier (1990) and Chamberlain

(2005), the CLR sets have some near optimality properties. In spherical coordinates

the parameter of interest, φ, lies on a one-dimensional unit circle. This parameter,

φ, is in one-to-one correspondence with the coefficient, β, on the endogenous regres-

sor. Inferences on φ can be easily translated to inferences on β and vice versa. This

circular model has two nice features. First, the length of the parameter space for φ

is finite, which makes every confidence set for φ finite (a confidence interval of length

Pi for φ corresponds to a confidence set for β equal to the whole line). Second, a cir-

cular model possesses additional symmetry and invariance properties. In particular,

the 2-sidedness condition corresponds to a symmetry on the circle. I show that the

CLR confidence set has nearly minimal arc length among symmetric similar invariant

confidence sets in a simultaneous equation model formulated in spherical coordinates.

I use simulations to examine the distribution of the lengths of the CLR, AR, and

LM confidence sets for β in linear coordinates. I also compute their expected lengths
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over a fixed finite interval. I find that the distribution of the length of the CLR

confidence set is first order stochastically dominated by the distribution of the length

of the LM confidence set. It is, therefore, not advisable to use the LM confidence set

in practice.

If one compares the length of the CLR and AR sets over a fixed finite interval,

then the CLR confidence set is usually shorter. The distributions of length of the AR

and CLR confidence sets, however, do not dominate one another in a stochastic sense.

The reason is that the AR confidence set can be empty with non-zero probability.

In other words, the distribution of length of the AR confidence set has a mass point

at zero. This peculiarity of the AR confidence set can be quite confusing for applied

researchers, since an empty interval makes inferences impractical.

This paper also addresses the practical problem of inverting the CLR, LM and

AR tests. One way of inverting a test is to perform grid testing, namely, to perform a

series of tests H0 : β = β0, where β0 belongs to a fine grid. This procedure, however,

is numerically cumbersome. Due to the simple form of the AR and LM tests, it is

relatively easy to invert them by solving polynomial inequalities (this is known for the

AR, but apparently not for the LM). The problem of inverting the CLR test is more

difficult, since both the LR statistic and a critical value are complicated functions

of β0. I find a very fast way to numerically invert the CLR test without using grid

testing. I also characterize all possible forms of the CLR confidence region.

The third main result of this paper is a proof of asymptotic validity of the CLR

confidence set. Moreira (2003) showed that if the reduced form errors are normally

distributed with zero mean and known covariance matrix, then the CLR test is sim-

ilar, and the CLR confidence set has exact coverage. Andrews, Moreira and Stock

(2006) showed that without these assumptions a feasible version of the CLR test has

asymptotically correct rejection rates both in weak instrument asymptotics and in

strong instrument (classical) asymptotics. I add to their argument by proving that

a feasible version of the CLR has asymptotically correct coverage uniformly over the

whole parameter space (including nuisance parameters).

The paper is organized as follows. Section 2 contains a brief overview of the model
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and definitions of the CLR, AR, and LM tests. Section 3 defines the circular model

and establishes its relation to the linear model. It also discusses a correspondence be-

tween properties of tests and properties of confidence sets. Section 4 gives algorithms

for inverting the CLR, AR and LM tests. Section 5 provides the results of simulations

comparing the length of the CLR, AR, and LM confidence sets. Section 6 contains a

proof of a theorem about a uniform asymptotic coverage of the CLR confidence set.

2 The model and notation.

In this section I introduce notation and give a brief overview of the tests used in

this paper for confidence set construction. I keep the same notation as in Andrews,

Moreira and Stock (2006) for the simultaneous equations model in linear coordinates

and try to stay close to the notation of Chamberlain (2005) for the model written in

spherical coordinates (the circular model).

We start with a model containing structural and reduced form equations with a

single endogenous regressor:

y1 = y2β + Xγ1 + u; (1)

y2 = Zπ + Xξ + v2. (2)

Vectors y1 and y2 are n × 1 endogenous variables, X is n × p matrix of exogenous

regressors, Z is n× k matrix of instrumental variables, β is the coefficient of interest.

To make linear and circular models equivalent I assume that β ∈ R⋃{∞}. There are

also some additional unknown parameters γ1, ξ ∈ Rp and π ∈ Rk. The n× 2 matrix

of errors [u, v2] consists of independent identically distributed (i.i.d.) rows, and each

row is normally distributed with mean zero and a non-singular covariance matrix.

Without loss of generality, I assume that Z ′X = 0. If the orthogonality condi-

tion Z ′X = 0 is not satisfied, one can change variables by considering Z̃ = (I −
X(X ′X)−1X ′)Z instead of initial instruments. This will change the nuisance coeffi-

cient ξ to ξ̃ = ξ + (X ′X)−1X ′Zπ.
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I also consider a system of two reduced form equations obtained by substituting

equation (2) into equation (1):

y1 = Zπβ + Xγ + v1; (3)

y2 = Zπ + Xξ + v2,

where

γ = γ1 + ξβ; v1 = u + βv2.

The reduced form errors are assumed to be i.i.d. normal with zero mean and positive-

definite covariance matrix Ω. Assume Ω to be known. The last two assumptions will

be relaxed in Section 6.

It is well-known that all optimal inference procedures depend on the data only

through sufficient statistics. So, without loss of generality, we can concentrate our

attention on a set of sufficient statistics for coefficients (β, π):

ζ = (Ω−1/2 ⊗ (Z ′Z)−1/2Z ′)


 y1

y2


 =


 ζ1

ζ2


 .

Using these sufficient statistics, the simultaneous equations model (1) and (2) is

reduced to the following which I will call a linear model:

ζ ∼ N((Ω−1/2a)⊗ ((Z ′Z)1/2π), I2k), (4)

where a = (β, 1)′.

I also consider what I call a circular model, which is a re-parametrization of linear

model (4) in spherical coordinates. Following Chamberlain (2005), let Si = {x ∈
Ri+1 : ‖x‖ = 1} be an i-dimensional sphere in Ri+1. Two elements x1 and x2 ∈ S1

are equivalent if x1 = x2 or x1 = −x2. Let S1
+ be the space of equivalence classes.

Define vectors φ = Ω−1/2a/‖Ω−1/2a‖ ∈ S1
+, and ω = (Z ′Z)1/2π/‖(Z ′Z)1/2π‖ ∈ Sk−1

and a real number ρ = ‖Ω−1/2a‖ · ‖(Z ′Z)1/2π‖. Then the circular model is given by

ζ ∼ N(ρφ⊗ ω, I2k). (5)

The vector φ has the same direction as the vector Ω−1/2(β, 1)′, but the former is

normalized to the unit length. Since, Ω is known, there is one-to-one correspondence

6



between β ∈ R
⋃{∞} and φ ∈ S1

+. As a result, all inferences about φ can be

translated into inferences about β and vice versa. The one-dimensional parameter ρ

characterizes the strength of instruments.

Let us reshape the 2k×1- vector ζ = (ζ ′1, ζ
′
2)
′ into the k×2-matrix D(ζ) = (ζ1, ζ2)

and define the 2×2-matrix A(ζ) = D′(ζ)D(ζ), which is the maximal invariant statistic

for a group of orthogonal transformations as discussed in Section 3.2. Also consider

the 2× 2- matrix Q(ζ, β) = J ′A(ζ)J , where J =
[

Ω1/2b
‖Ω1/2b‖ ,

Ω−1/2a
‖Ω−1/2a‖

]
is a 2× 2 matrix,

and b = (1,−β)′. Note that J = [φ⊥, φ], where φ⊥ is orthogonal to φ: φ′φ⊥ = 0.

Properties of matrix Q(ζ, β) are discussed in Andrews, Moreira and Stock (2006). In

particular, if β0 is the true value of the coefficient of interest, then Q11(ζ, β0), the

upper left element of Q(ζ, β0), is χ2
k-distributed. The lower right element, Q22(ζ, β0),

has a non-central χ2-distribution with non-centrality parameter that depends on the

strength of the instruments. The distribution of the off-diagonal element Q12(ζ, β0)

can be found in Andrews, Moreira and Stock (2006).

This paper considers three tests: the Anderson - Rubin (1949) AR test, the LM

test proposed by Kleibergen (2002) and Moreira (2002), and Moreira’s (2003) CLR

test. I define each of them below for a linear model. The corresponding definitions

for a circular model are obvious. All three tests have the exact size α independent of

the strength of instruments.

The AR test rejects the null H0 : β = β0 if the statistic

AR(β0) =
Q11(ζ, β0)

k

exceeds the (1− α)- quantile of a χ2
k distribution.

The LM test accepts the null if the statistic

LM(β0) =
Q2

12(ζ, β0)

Q22(ζ, β0)

is less than the (1− α)- quantile of a χ2 distribution with 1 degree of freedom.

The CLR test is based on the conditional approach proposed by Moreira (2003).

He suggested a whole class of tests using critical values that are functions of the data.

7



The CLR test uses the LR statistic:

LR =
1

2

(
Q11 −Q22 +

√
(Q11 + Q22)2 − 4(Q11Q22 −Q2

12)

)

and critical value mα(Q22) which is a function of Q22. For every α, the critical value

function, mα(q22), is chosen in such a way that the conditional probability of the LR

statistic exceeding mα(q22) given that Q22 = q22 equals α:

P {LR > mα(q22)|Q22 = q22} = α.

The CLR test accepts the null H0 : β = β0 if LR(β0) < mα(Q22(β0)).

3 Relation between properties of a test and prop-

erties of a confidence set.

This section describes how the properties of tests are translated into properties of the

corresponding confidence sets. Let ζ be a random variable satisfying a linear model (4)

(or a circular model (5)). I intend to construct a confidence set for parameter β (for

parameter φ) which is only a part of the parameter vector θ = (β, π) (θ = (φ, ω, ρ)).

Definition 1 A set C(ζ) is a confidence set for β at confidence level 1− α if for all

values of β and π

Pβ,π{β ∈ C(ζ)} ≥ 1− α. (6)

According to Lehmann (1986, p.90), there is a one-to-one correspondence between

testing a series of hypotheses of the form H0 : β = β0 and constructing confidence

sets for β. In particular, if C(ζ) is a confidence set at confidence level 1 − α, then

a test that accepts H0 : β = β0 if and only if β0 ∈ C(ζ), is an α-level test. And,

vice versa, if Aβ0 is an acceptance region for testing β0, then C(ξ) = {β0 : ξ ∈ Aβ0}
is a confidence set. A confidence set is similar if statement (6) holds with equality.

Similar tests correspond to similar confidence sets and vice versa.
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3.1 Power vs. accuracy and expected length.

Accuracy of a confidence set is the ability to not cover false values of the parameter of

interest. A uniformly most accurate (UMA) confidence set maximizes for each false

value the probability of not including it. A UMA confidence set corresponds to a

uniformly most powerful (UMP) test and vice versa.

Practitioners are usually more interested in another criterion, the expected length.

According to Pratt’s theorem (1961), the expected length of a confidence set (if it

is finite) equals the integral over false values of the probability each false value is

included. In fact, the statement is more general: “length” can be treated as a length

with respect to any measure. Namely,

Eβ0,π

∫

β∈C(ζ)

µ(dβ) =

∫ ∞

−∞
Pβ0,π{β ∈ C(ζ)}µ(dβ),

for any measure µ as long as both sides of the equality are finite. As a consequence,

a UMA set has the shortest expected length as long as the expected length is finite.

Andrews, Moreira and Stock (2006) show that the CLR test is nearly a UMP test

in a class of two-sided invariant similar tests. The invariance here is an invariance

with respect to orthogonal transformations Ok of instruments, defined below. This

result suggests that the CLR confidence set might possess some optimality properties

with respect to the length. However, Pratt’s theorem cannot be applied directly.

First, a confidence set with correct coverage in the case of weak instruments must be

infinite with positive probability. As a result, the expected length of such an interval

is infinite. Second, the CLR does not maximize power at every point; rather, it nearly

maximizes the average power at two points lying on different sides of the true value.

This is the ways of imposing two-sidedness condition. The location of the points

depend on each other, but they are not symmetric in the linear sense. For the model

written in spherical coordinates, I prove that the CLR confidence set for parameter

φ will have nearly shortest expected arc length.
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3.2 Invariance with respect to Ok.

Consider a group of orthogonal transformations Ok on the sample space:

Ok =



gF : gF (ζ) =


 Fζ1

Fζ2


 = (I2 ⊗ F )ζ; F is k × k orthogonal matrix



 .

The corresponding group of transformations on the parameter space of a linear model

does not change the value of β, but it does rotate the nuisance parameter π:

Ol
k = {gl

F : gl
F (β, π) = (β, (Z ′Z)−1/2F (Z ′Z)1/2π); F is k × k orthogonal matrix}.

For a circular model (the model written in spherical coordinates), the corresponding

group of transformations on the parameter space is:

Oc
k = {gc

F : gc
F (φ, ω, ρ) = (φ, Fω, ρ); F is k × k orthogonal matrix}.

A confidence set C(ζ) for β (for φ) is invariant with respect to the group of trans-

formations Ok if C(ζ) = C(gF (ζ)) for all gF ∈ Ok. Invariant tests correspond to

invariant confidence sets. Andrews, Moreira and Stock(2006) showed that A(ζ) is

maximal invariant for the group of transformations Ok. It means that confidence

sets (linear and circular) invariant with respect to Ok can depend on ζ only through

statistics A(ζ). That is, for any Ok-invariant confidence set C(ζ) there is a function

f such that:

C(ζ) = {φ0 : F (φ0, A(ζ)) ≥ 0} = {φ0 : f(φ0, Q(ζ, φ0)) ≥ 0}.

If we restrict our attention to decision rules that are invariant with respect to

Ok, then the risks for invariant loss functions (for example, rejection rates and power

for tests; coverage probability, accuracy, and expected length for sets) depend only

on a lower-dimensional parameter,
(
β, λ = π′Z′Zπ

k

)
in a linear model and (φ, ρ) in a

circular model.

3.3 Two-sided tests and symmetry in a circular model.

Andrews, Moreira and Stock (2006) discuss different ways of constructing 2-sided

power envelopes. One approach is to maximize the average power at two alternatives
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on different sides of the null by choosing these alternatives in such a way that the

maximizer is an asymptotically efficient test under strong instruments asymptotics.

Consider some value of the null, β0, and an alternative, (β∗, λ∗). Then there is another

alternative, (β∗2 , λ
∗
2), on the other side of β0 such that a test maximizing average power

at these two points is asymptotically efficient (formula for (β∗2 , λ
∗
2) is given in Andrews,

Moreira and Stock (2006)).

In general, there is no linear symmetry between alternatives: β∗ − β0 6= β0 −
β∗2 . However, the way of imposing two-sidedness stated above gives symmetry of

alternatives in a circular model. Namely, let (φ∗, ρ∗) correspond to (β∗, λ∗) and (φ∗2, ρ
∗
2)

correspond to (β∗2 , λ
∗
2). Then ρ∗ = ρ∗2 and φ∗ is symmetric (on the circle) to φ∗2 with

respect to φ0; that is, φ′0φ
∗ = φ′0φ

∗
2 and (φ⊥0 )′φ∗ = −(φ⊥0 )′φ∗2.

An equivalent way of imposing the 2-sidedness is imposing a sign-invariance con-

dition. This condition is specific to the null value φ0 tested. Consider a statistic

S = D(ζ)φ⊥0 . If φ0 is the true value, then S has a k-dimensional normal distribution

with zero mean and identity covariance matrix, otherwise the mean of S is nonzero.

Consider a group of transformations on the sample space which contains two trans-

formations: S 7→ −S and S 7→ S. One can check that the corresponding group of

transformations on the parameter space consists of two transformations: φ∗ 7→ φ∗2

and φ∗ 7→ φ∗. The null hypothesis H0 : φ = φ0 is invariant to the group of sign

transformations. Let a vector |Q| = (Q11, |Q12|, Q22) contain the absolute values of

elements of Q(ζ, φ0). An Ok-invariant test for testing H0 : φ = φ0 is invariant to the

group of sign transformations if it depends on |Q(ζ, φ0)| only. I call a confidence set

C(ζ) symmetric if

C(ζ) = {φ0 : f(φ0, |Q(ζ, φ0)|) ≥ 0}.

By applying Pratt’s theorem to the result of Andrews, Moreira and Stock (2006),

I receive the following statement:

Lemma 1 In an IV model with a single endogenous regressor (1), (2) with ho-

moscedastic normal error terms with known covariance matrix Ω, the CLR confidence

set has nearly uniformly shortest expected arc length among similar symmetric Ok-
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invariant confidence sets for φ, where φ is the parameter of interest in the circular

formulation of the model (5).

3.4 Invariance with respect to O2.

Another type of invariance introduced in Chamberlain (2005) is invariance with re-

spect to rotations of vector (y1, y2)
′. This type of invariance is quite cumbersome to

deal with in a linear model, but it is very natural in spherical coordinates.

Let me consider a group of transformations on the sample space:

O2 = {GF : GF (ζ) = (F ⊗ Ik)ζ; F is 2× 2 orthogonal matrix} .

The corresponding group of transformations in the parameter space of a circular

model is a group of rotations of vector φ:

Oc
2 = {Gc

F : Gc
F (φ, ω, ρ) = (Fφ, ω, ρ); F is 2× 2 orthogonal matrix}.

The confidence set Cc(ζ) for φ in a circular model (5) is invariant with respect to

the group of transformations O2 if Cc(GF (ζ)) = F (Cc(ζ)) for all GF ∈ O2, here

F (C) = {φ : F−1φ ∈ C} stays for the corresponding rotation of the set over the unit

circle.

Lemma 2 A confidence set C(ζ) for φ in a circular model (5) is invariant with

respect to group O2 ×Ok if and only if there exists a function f such that

C(ζ) = {φ : f(Q(ζ, φ)) ≥ 0}.

Corollary 1 Confidence sets obtained by inverting the CLR, AR, and LM tests are

invariant with respect to O2 ×Ok.

Corollary 2 The expected arc length of confidence sets for φ obtained by inverting

the CLR, AR, and LM tests depend only on ρ and k.
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4 Algorithms for constructing CLR, AR and LM

confidence sets.

In this section I describe an easy way to invert the CLR, AR, and LM tests and find

an analytical description of the three confidence sets. I should emphasize that the

general description of the AR sets as well as the algorithm for finding them is well

known. The descriptions of the other two sets as well as algorithms for finding them

are new.

4.1 Confidence sets based on the CLR test.

This section describes an algorithm for constructing a confidence set for the coefficient

on the single endogenous regressor, β, by inverting the CLR test.

One way to invert the CLR test is to perform a series of tests H0 : β = β0 over

a fine grid of β0 using the CLR testing procedure. However, such an algorithm is

numerically cumbersome. The main difficulty with finding an analytically tractable

way of inverting the CLR test is that both the test statistic(LR) and the critical value

function mα(Qt) depend not only on the data, but on the null value of the parameter

β0. In both cases the dependence on β0 is quite complicated. I transform both sides

to make the dependence simpler.

Let M(β0) = maxeval(Q(β0)) be the maximum eigenvalue of the matrix Q(β0),

then

M =
1

2

(
Q11 + Q22 +

√
(Q11 + Q22)2 − 4(Q11Q22 −Q2

12)

)
.

As a result, the LR statistic can be written as

LR(β0) = M(ζ, β0)−Q22(ζ, β0).

Recall that Q(ζ, β0) = J ′A(ζ)J. Since J ′J = I2, M = maxeval(Q(ζ, β0)) = maxeval(A(ζ))

does not depend on the null value β0. That is, LR(β0) = M(ζ)−Q22(ζ, β0).

The confidence set based on the CLR test is the set

CCLR
α (ζ) = {β0 : M(ζ)−Q22(ζ, β0) < mα (Q22(ζ, β0))}
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= {β0 : M(ζ) < Q22(ζ, β0) + mα (Q22(ζ, β0))} ,

where mα(q22) is the critical value function for the CLR test.

Lemma 3 For any α ∈ (0, 1), the function f(q22) = q22 + mα(q22) is strictly increas-

ing. There exists a strictly increasing inverse function f−1.

It follows from Lemma 3 that the CLR confidence set is

CCLR
α (ζ) = {β0 : Q22(ζ, β0) > C(ζ)} ,

where C(ζ) = f−1(M) depends on the data only, but not on the null value β0. Since

Q22(ζ, β0) =
a′0Ω

−1/2A(ζ)Ω−1/2a0

a′0Ω−1a0

,

the problem of finding the CLR confidence set can be reduced to solving an ordinary

quadratic inequality:

a′0
(
Ω−1/2A(ζ)Ω−1/2 − CΩ−1

)
a0 > 0.

Theorem 1 Assume that we have model (1) and (2) written in linear coordinates.

Then the CLR confidence region CCLR
α (ζ) can have one of three possible forms:

1) a finite interval CCLR
α (ζ) = (x1, x2);

2) a union of two infinite intervals CCLR
α (ζ) = (−∞, x1) ∪ (x2, +∞);

3) the whole line CCLR
α (ζ) = (−∞, +∞).

The form of the interval might seem to be a little bit strange. However, one should

keep in mind that the interval with correct coverage under the weak instrument

assumptions should be infinite with positive probability. For a model written in

spherical coordinates one has:

CCLR
α (ζ) = {φ0 : φ′0(A(ζ)− C)φ0 > 0} .

The second case described in the theorem corresponds to the arc containing point

φ = Ω−1/2e2√
e′2Ω−1e2

, where e2 = (0, 1)′.

More on technical implementation. I suggest a numerically simple way of

finding the inverse function of f . Let C = f−1(M), that is, mα(C) + C = M , or
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mα(C) = M−C. Andrews, Moreira and Stock (2007) defined the conditional p-value

of the CLR test as the following function:

p(lr; q22) = P{LR > lr|Q22 = q22}.

An alternative way to perform CLR test is to compare p(LR; Q22) with the significance

level α. Andrews, Moreira and Stock (2007) wrote the function p(lr; q22) as an integral

of an analytic function and suggested a numerical way of computing it. It is easy to see

that finding C for any given M is equivalent to solving an equation p(M−C; C) = α.

We now have:

Lemma 4 For any fixed M > 0 the function l(C) = p(M −C; C) is monotonic in C

for 0 < C < M .

Since l(C) is monotonic, and C belongs to an interval [0,M ], I can find C such that

l(C) = α using a binary search algorithm. Given that the calculation of p(lr; q22) is

fast, finding C with any reasonable accuracy will be fast as well. Mikusheva and Poi

(2006) describe a Stata software program implementing the suggested procedure.

4.2 AR confidence set.

The results of this subsection are not new; I summarize them for the sake of complete-

ness. The idea of inverting the AR test goes back to Anderson and Rubin (1949). A

similar argument is also used in Dufour and Taamouti (2005)

According to its definition, the AR confidence set is a set CAR
α (ζ) = {β0 :

Q11(ζ, β0) < kχ2
α,k}, which can be found by solving a quadratic inequality.

Lemma 5 Assume that we have model (1) and (2). Then the AR confidence region

CAR
α (ζ) can have one of four possible forms:

1) a finite interval CAR
α (ζ) = (x1, x2);

2) a union of two infinite intervals CAR
α (ζ) = (−∞, x1) ∪ (x2, +∞);

3) the whole line CAR
α (ζ) = (−∞, +∞);

4) an empty set CAR
α (ζ) = ∅.
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4.3 The LM confidence set.

Inverting the LM test is easier than inverting the CLR test because the LM statistic

is a relatively simple function of β0 and critical values are fixed. Finding the LM

region is equivalent to solving an inequality of the fourth power, which always has

a solution in radicals due to Cardano’s formula. Solving an arbitrary polynomial

inequality of the fourth order can be cumbersome. I rewrite the LM statistic in a

way that allows us to solve two quadratic inequalities instead. The new formula also

reveals new peculiarities of the LM test.

Let N = mineval(Q) be the minimum eigenvalue of the matrix Q. The value of

N depends on the data only, but not on the null value tested. As shown before

1

2

(
Q11 −Q22 +

√
(Q11 + Q22)2 − 4(Q11Q22 −Q2

12)

)
= M −Q22. (7)

Similarly,

1

2

(
Q11 −Q22 −

√
(Q11 + Q22)2 − 4(Q11Q22 −Q2

12)

)
= N −Q22. (8)

By multiplying (7) and (8) I obtain:

Q2
12(β0) = −(M −Q22(β0))(N −Q22(β0)).

As a result, the LM statistic has the following form:

LM(β0) = −(M −Q22(β0))(N −Q22(β0))

Q22(β0)
.

The LM confidence region is a set

CLM
α (ζ) =

{
β0 : −(M(ζ)−Q22(ζ, β0))(N(ζ)−Q22(ζ, β0))

Q22(ζ, β0)
< χ2

1,α

}
.

Obtaining the LM confidence set can be done in two steps. As the first step, one

solves for the values of Q22(ζ, β0) satisfying the inequality above, which is an ordinary

quadratic inequality with respect to Q22. Then, one finds the LM confidence set for

β0 by solving inequalities of the form {β0 : Q22(ζ, β0) < s1} ∪ {β0 : Q22(ζ, β0) > s2}.

Theorem 2 Assume that we have model (1) and (2) with k > 1. Then the LM

confidence region CLM
α (ζ) can have one of three possible forms:
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1) a union of two finite intervals CLM
α (ζ) = (x1, x2) ∪ (x3, x4);

2) a union of two infinite intervals and one finite interval

CLM
α (ζ) = (−∞, x1) ∪ (x2, x3) ∪ (x4, +∞);

3) the whole line CLM
α (ζ) = (−∞, +∞).

The LM confidence sets for β in general correspond to two arcs on the circle in

spherical coordinates. Case 2) takes place when one of the arcs covers the point

φ = Ω−1/2e2√
e′2Ω−1e2

.

4.4 Comparison of the CLR, AR and LM confidence sets.

There are several observations one can make based on the above descriptions of the

CLR, AR, and LM confidence sets.

First, all three confidence sets can be infinite, and even equal to the whole line.

A good confidence set is supposed to correctly describe the measure of uncertainty

about the parameter contained in the data. Infinite confidence sets appear mainly

when instruments are weak. In these cases, we have little or no information about the

parameter of interest, which is correctly pointed out by these confidence sets. The

confidence sets might be infinite but not equal to the whole line (two rays - for AR

and the CLR, or an interval and two rays for the LM). One should interpret these as

cases with very limited information where, nevertheless, one can reject some values

of the parameter.

Second, the LM confidence set has a more complicated structure than the AR and

CLR sets. In general, the LM set corresponds to two arcs on the unit circle, whereas

the AR and CLR correspond to one arc. This makes the LM sets more difficult to

explain in practice. I will discuss this point more in the next subsection.

My third observation is that the AR confidence set is empty with non-zero prob-

ability. This is due to the fact that the AR test rejects the null not only when β0

seems to be different from the true value of the parameter, but also when the exclu-

sion restrictions for the IV model seem to be unreliable. When the AR confidence

set is empty, it means that the data rejects the model. This is not a problem from a
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theoretical point of view since false rejections happen in less than 5% of cases (signif-

icance level). However, receiving an empty confidence set can be quite confusing for

empirical researchers.

Fourth, there is no strict order among the length of intervals valid in all real-

izations. Despite the fact that the CLR test possesses better power properties than

the AR test, one cannot claim that an interval produced by the CLR test is always

shorter than one produced by the AR test. More than that, it is possible that AR

set is empty while the CLR set is the whole line. This would happen, if N > χ2
k,α,

and the difference between two eigenvalues of the matrix Q is small, in particular, if

f−1(M) < N .

4.5 Point estimates.

This section points out one peculiarity of LM confidence sets, namely that it concen-

trated around two points, one of which is “wrong”.

For each test, one may find parameter value(s) that would be the last to disappear

from the corresponding confidence set, or in other words, the limit of a confidence

set when the confidence level decreases. This is equivalent to finding the value of β0

which maximizes the p-value of the AR and LM tests and the conditional p-value of

the CLR test. This idea was previously suggested in Dufour et al. (2005).

Lemma 6 Assume that we have model (1) and (2) with iid error terms (ui, v2,i) that

are normally distributed with zero mean and non-singular covariance matrix. Let

β̂LIML be the Limited Information Likelihood Maximum (LIML) estimator of β. Let

us also introduce a statistic β̃, such that β̃ = arg minβ0 Q22(ζ, β0). Then

1) β̂LIML is the maximizer of both the p-value for AR test and the conditional

p-value for the CLR test. Maximum of the p-value for the LM test is achieved at two

points β̂LIML and β̃:

β̂LIML = arg max
β0

P{χ2
k > AR(ζ, β0)} = arg max

β0

p(LR(ζ, β0); Q22(ζ, β0));

{β̂LIML, β̃} = arg max
β0

P{χ2
1 > LM(ζ, β0)}.
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2) β̃ is the minimizer of both the p-value for AR test and the conditional p-value

for the CLR test

β̃ = arg min
β0

P{χ2
k >

Q11(ζ, β0)

k
} = arg min

β0

p(LR(ζ, β0); Q22(ζ, β0)).

A part of Lemma 6 is known; in particular, Moreira (2002, 2003) noted that the

LIML always belongs to the LM and CLR confidence sets, and the LM statistics has

two zeros.

The p-value of the LM test reaches its maximum at two points, the LIML and

β̃. It is interesting to notice that β̃ is the point where the conditional p-value of the

CLR test achieves its minimum (the “worst” point from the standpoint of AR and

the CLR)! The non-desirable point β̃, and a neighborhood around it always belong

to the LM confidence set (remember that the LM set corresponds to two arcs in a

circular model). This observation can be treated as an argument against using the

LM test in practice.

5 Simulations.

According to Andrews, Moreira and Stock (2006), the CLR test is nearly optimal in

the class of two-sided similar tests that are invariant to orthogonal transformations.

It has higher power than the AR and LM tests for a wide range of parameters. A

more powerful test tends to produce a shorter confidence set. As I showed in Section

3, the CLR confidence set has nearly shortest expected arc length among similar

symmetric Ok - invariant confidence sets. In this section, I assess the magnitude of

the differences among the expected arc length of the three confidence sets. I also

compare lengths of different confidence sets in linear coordinates.

I start with comparing the expected arc length of the CLR, AR and LM confidence

sets. Recall from Section 3 that all three confidence sets are O2 ×Ok - invariant. As

a result, their expected lengths depend only on the number of instruments k and a

parameter ρ, which characterizes the strength of instruments. I compute the expected

length using simulations for k = 2, 3, 5, 10 and for ρ ranging from 0.5 to 10 with a step
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of 0.5. All results are based on 1000 simulations. The results of these simulations

are given in Figure 1. The expected arc length of the CLR set is always smaller

than that of the AR confidence set, in accordance with the results from Section 3.

The difference between the expected arc lengths of the CLR and AR confidence sets,

however, is relatively small. Both sets significantly outperform the LM confidence set

when the number of instruments is big.

[Figure 1 goes here.]

Although the CLR confidence set has the nearly shortest arc length, few prac-

titioners value this property; instead, most prefer to have a short confidence set in

linear coordinates. That is why I compare the linear length of confidence sets. One of

the problems, though, is that valid confidence sets are infinite with a positive proba-

bility, and as a result, the expected length is infinite. I do two types of experiments:

1) I simulate the distribution of confidence set length for different tests in a linear

model; 2) I find the average linear length of sets over a fixed bounded interval ; that

is, the expected length of the intersection of a confidence set with a fixed interval.

I check whether the distributions of the length of the AR and LM confidence sets

first order stochastically dominate the distribution of the CLR confidence set. By

applying a linear transformation to model (1) and (2), one can always assume that

the true value of β equals zero and Ω =


 1 r

r 1


 . The distributions of lengths of

the CLR, AR and LM confidence sets depend on the number of instruments k, the

strength of instruments λ (= 1
k
π′Z ′Zπ) and the correlation between errors r.

As a base case I use the same setup (k = 5, λ = 8, r = 0) as in Andrews,

Moreira and Stock (2006). I also compute the results for k = 2, 3, 5, 10; λ = 1, 2, 4, 8;

r = 0, 0.2, 0.5, 0.95. Coverage probability for all sets is 95%. Representative results

are reported in Figure 2 and Table 1.

[Figure 2 goes here.]

[Table 1 goes here.]
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Several conclusions can be made. First, the distribution of length of the LM

confidence set first order dominates the one of the CLR confidence set. This result is

robust over the range of parameters I checked. This shows the relative inaccuracy of

the LM confidence set. Based on my simulation results, I recommend not using the

LM confidence set in practice.

Second, one cannot say that the distribution of the length of the AR confidence

set first order dominates that of the CLR confidence set. The opposite order does

not hold either. The lack of ordering can be partially explained by the fact that the

distribution of the length of the AR confidence set has a mass point at zero due to

“false” rejection of the model. Furthermore, the cdfs for the length of the AR and

the CLR sets cross. Crossing of the cdfs occurs before the cdfs reach the 10% level.

Another way to compare the length of different confidence sets is to compute

the expected length of intersection of confidence sets with a fixed finite interval. It

corresponds to a situation when a practitioner can restrict the parameter space to be a

fixed finite interval. The expected length would depend on k, ρ, β0 and the interval. I

performed simulations for β0 = 0 and symmetric intervals [-1,1], [-3,3], [-5,5], [-10,10],

[-100,100] and [-500,500]. The results are in Figure 3. As the interval length becomes

bigger (a researcher puts weaker restrictions on the parameter space) the expected

lengths of the CLR and AR sets become closer to each other. One reason for that is

related to the fact that the length of the AR confidence set has a mass point at zero

due to false rejection of the model. For large intervals the LM set performs poorly.

When a practitioner has really good prior information and can restrict the parameter

space to a small interval, the CLR outperforms the two other sets.

[Figure 3 goes here.]

To summarize, in many setups the CLR confidence set looks more attractive in

terms of its length. The LM confidence set possesses some unfavorable properties

(such as always including β̃) and tends to be longer. I would not recommend using

the LM confidence sets in practice.
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6 Asymptotic validity

In previous sections I assumed that the reduced form errors [v1, v2] are i.i.d. normal

with zero mean and known covariance matrix Ω. Then the CLR, AR and LM testing

procedures and confidence sets are exact; that is

inf
β0,π

Pβ0,π{ hypothesis H0 : β = β0 is accepted} = 1− α,

when any of the three tests is used.

The assumption of normality can be taken away and the matrix Ω (if unknown)

can be replaced with an estimator of Ω at the cost of obtaining asymptotically valid

rather than exactly valid tests and confidence sets. Due to the presence of the nuisance

parameter π, there are several notions of asymptotic validity. I concentrate on uniform

asymptotic validity:

lim
n→∞

inf
β0,π

Pβ0,π{ hypothesis H0 : β = β0 is accepted} = 1− α, (9)

rather than the weaker notion of point-wise asymptotic validity(often called strong

instrument asymptotics):

lim
n→∞

inf
β0

Pβ0,π{ hypothesis H0 : β = β0 is accepted} = 1− α, ∀ π. (10)

The difference between the two is that (10) allows the speed of convergence to depend

on π and be very slow for π very close to zero (weak identification). This may lead to

the test having finite sample size far from the declared asymptotic size for some part of

the parameter space. For example, it is known that the standard TSLS t-test is point-

wise asymptotically valid for π ∈ Rk \ {0}, but not uniformly asymptotically valid.

Another example, Andrews and Guggenberger (2005) showed that a subsampling

TSLT t-test is also point-wise, but not uniformly asymptotically valid. In both cases

the sizes of the mentioned tests are very misleading if π is close to 0.

Another way to look at the differences between (9) and (10) is that (9) requires

convergence of Pβ0,π{. . . } along all sequences of πn, whereas for (10) it is sufficient

to check this for constant sequences πn = π. Andrews, Moreira, and Stock (2006)
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showed that the CLR test has point-wise asymptotically correct size (10) and has an

asymptotically correct size along local to unity sequences πn = C/
√

n:

lim
n→∞

inf
β0

Pβ0,πn=C/
√

n{ hypothesis H0 : β = β0 is accepted} = 1− α, (11)

for all non-stochastic C. Statement (11) is called weak instrument asymptotics. The-

orems about asymptotic size by Andrews and Guggenberger (2005) are suggestive

that statements (10) and (11) may indicate that the CLR satisfies (9). However, to

the best of my knowledge no proof of uniform asymptotic validity of the CLR exists.

Some suggestions on how to prove uniform asymptotic validity (9) were stated by

Moreira(2003). I use a different approach. I prove asymptotic validity of the CLR

test (confidence set) by using a strong approximation principle. The idea of the proof

is to put some sample statistics with normal errors and with non-normal errors on

a common probability space in such a way that they are almost surely close to each

other.

I use the Representation Theorem from Pollard (1984, chapter IV.3):

Lemma 7 Let {Pn} be a sequence of probability measures on a metric space weakly

converging to a probability measure P . Let P concentrate on a separable set of com-

pletely regular points. Then there exist random elements Xn and X, where Pn =

L(Xn), and P = L(X), such that Xn → X almost surely.

6.1 Assumptions

Assume we have a structural IV model (1), (2), that leads to reduced form model

(2), (3). Let us introduce two n × 2-dimensional matrices Y = [y1, y2] and v =

[v1, v2], and let Vi = [v1,i, v2,i ] be a 1 × 2-matrix for every i = 1, ..., n. We drop the

initial assumptions that Vi are iid normally distributed with known variance matrix

Ω. Instead, we use the following high-level assumptions, previously introduced and

discussed in Andrews, Moreira, and Stock (2006).

Assumption 1. 1√
n
vec(Z ′v) →d N(0, Φ) for some positive-definite 2k × 2k matrix

Φ.

23



Assumption 2. 1
n
Z ′Z →p D for some positive-definite k × k matrix D;

Assumption 3. 1
n
v′v →p Ω for some positive-definite 2× 2 matrix Ω;

Assumption 4. Φ = Ω⊗D.

Assumptions 2 and 3 hold under suitable conditions for a weak Law of Large

Numbers. Assumption 1 is satisfied if the corresponding Central Limit Theorem

holds. Assumption 4 is consistent with some form of conditional homoscedastisity.

As a simple example, all assumptions are satisfied if {Vi, Zi}n
i=1 are iid with E(Vi|Zi) =

0, E(V ′
i Vi|Zi) = Ω and the second moments of Vi, Zi and V ′

i Zi are finite.

6.2 Ω is known.

For the moment, I assume that Ω is known. Let me consider the following statistics,

the properties of which are discussed in Moreira (2003):

S = (Z ′Z)−1/2Z ′Y b0(b
′
0Ωb0)

−1/2;

T = (Z ′Z)−1/2Z ′Y Ω−1a0(a
′
0Ω

−1a0)
−1/2,

where b0 = (1,−β0)
′, a0 = (β0, 1)′. The CLR test can be performed by calculating the

LR statistic

LR(S, T ) =
1

2

(
S ′S − T ′T +

√
(S ′S + T ′T )2 − 4(S ′ST ′T − (S ′T )2)

)
,

and comparing the conditional p-value function P (S, T ) with α:

P (S, T ) = p(m = LR(S, T ); q22 = T ′T ).

I will track the dependence of the statistics on π explicitly. Under the null one has:

S(π) = (Z ′Z)−1/2Z ′vb0(b
′
0Ωb0)

−1/2 = S;

T (π) = (Z ′Z)1/2π(a′0Ω
−1a0)

1/2 + (Z ′Z)−1/2Z ′vΩ−1a0(a
′
0Ω

−1a0)
−1/2.

The Representation Theorem applied to Assumptions 1,2 and 4 implies that there

exist random variables on a common probability space such that (Z ′Z)−1/2Z ′v → ξ =

[ξ1 : ξ2] a.s., where vec(ξ) ∼ N(0, Ω⊗ Ik). Let us define a pair of variables

(S∗(π), T ∗(π)) = (ξb0(b
′
0Ωb0)

−1/2, (Z ′Z)1/2π(a′0Ω
−1a0)

1/2 + ξΩ−1a0(a
′
0Ω

−1a0)
−1/2).
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Then

sup
π

(|S∗(π)− S(π)|+ |T ∗(π)− T (π)|) = |((Z ′Z)−1/2Z ′v − ξ)b0(b
′
0Ωb0)

−1/2|+

+|((Z ′Z)−1/2Z ′v − ξ)Ω−1a0(a
′
0Ω

−1a0)
−1/2| → 0 a.s. (12)

Let ε = [ε1 : ε2] be 2 × n normal random variables. Assume that they are i.i.d.

across rows with each row having a bivariate normal distribution with mean zero and

covariance matrix Ω. Let me define statistics in a model with normal errors:

SN(π) = (Z ′Z)−1/2Z ′εb0(b
′
0Ωb0)

−1/2;

TN(π) = (Z ′Z)1/2π(a′0Ω
−1a0)

1/2 + (Z ′Z)−1/2Z ′εΩ−1a0(a
′
0Ω

−1a0)
−1/2.

Then the pair of variables (SN(π), TN(π)) is distributionally equivalent to the pair

(S∗(π), T ∗(π)). Since the CLR test is exact under normality assumptions:

P{P (SN(π), TN(π)) > α} = 1− α for all π,

the analogous statement for (S∗(π), T ∗(π)) is true:

P{P (S∗(π), T ∗(π)) > α} = 1− α for all π. (13)

Now I note that the conditional p-value function is a Lipschitz function with

respect to S and T .

Lemma 8 The function P (S, T ) is Lipshitz with respect to S and T . In particular,

there exists a constant C such that for all (S, T ) and (S̃, T̃ )

|P (S, T )− P (S̃, T̃ )| ≤ C
(
‖T − T̃‖+ ‖S − S̃‖

)
.

Combining together equations (12), (13) and Lemma 8, I end up with the following

theorem about the asymptotic validity of the CLR confidence set:

Theorem 3 If assumptions 1)-4) are satisfied then the CLR test is asymptotically

valid:

lim
n→∞

inf
π

Pπ {P (S(π), T (π)) > α} = 1− α.
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6.3 Ω is unknown.

I showed how to construct a strong approximation when the covariance matrix of

reduced form errors Ω is known. When Ω is unknown, one can substitute for it with

an estimate Ωn = (n− k− p)−1V̂ ′V̂ , where V̂ = Y −PZY −PXY . Andrews, Moreira,

and Stock (2006) show that under Assumptions 1-4 Ω̂n is a consistent estimate of Ω,

and the convergence holds uniformly with respect to π. The feasible versions of the

statistics are:

S(π) = (Z ′Z)−1/2Z ′Y b0(b
′
0Ω̂b0)

−1/2 = (Z ′Z)−1/2Z ′V b0(b
′
0Ω̂b0)

−1/2,

and

T (π) = (Z ′Z)−1/2Z ′Y Ω̂−1a0(a
′
0Ω̂

−1a0)
−1/2

= (Z ′Z)1/2π(a′0Ω̂
−1a0)

1/2 + (Z ′Z)−1/2Z ′vΩ̂−1a0(a
′
0Ω̂

−1a0)
−1/2.

Let (S∗(π), T ∗(π)) be defined as before. Then

sup
π

(|S∗(π)− δS(π)|+ |T ∗(π)− δT (π)|) → 0 a.s.,

where δ =
√

a′0Ω−1a0

a′0Ω̂−1a0
. One can note that δ → 1 a.s., and the convergence holds

uniformly with respect to π. From the Lipshitz property I have:

sup
π
|P (S∗(π), T ∗(π))− P (δS(π), δT (π))| → 0 a.s.,

which implies

sup
π
|p(S∗(π), T ∗(π))− p(S(π), T (π))| → 0 a.s.

I conclude that the CLR test is asymptotically correct.

7 Discussion and Conclusion.

The paper shows that CLR confidence sets possess some optimality property in a class

of similar symmetric invariant confidence set. The class includes well-known AR and

LM confidence sets. The paper also provides a fast algorithm for constructing CLR
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set and proves that the CLR has uniform asymptotic coverage under quite general

assumptions.

There are some restrictive assumptions maintained in the paper, namely, normal-

ity of error terms, homoscedasticity of errors, and presence of a single endogenous

regressor. Below I discuss whether these assumptions can be dropped.

Normality of error terms is needed for optimality property only, since Section 6

proves that without normality the CLR is uniformly asymptotically similar. Catta-

neo, Crump and Jansson (2009) show that optimality of the CLR is lost once the

normality assumption is relaxed. In particular, they show that if errors are i.i.d

and belong to some class of smooth distributions, the CLR can be improved. How-

ever, since the CLR is a “nearly optimal” test for the limiting problem, according to

Müller(2008), the CLR possesses asymptotically “nearly optimal” performance among

“robust” tests (in a sub-class of asymptotically similar, symmetric, invariant tests).

Müller (2008) defines the robustness of a test as the ability to provide the correct

asymptotic size for a wide range of data generating processes satisfying very mild

assumptions about weak convergence (Assumptions 1-4 in our case). Müller (2008)

argues that any test with a higher asymptotic power necessarily lacks robustness.

Homoscedasticity of error terms is a restrictive assumption. Andrews, Moreira and

Stock (2006) provide versions of AR, LM and CLR tests robust to heteroscedasticity.

This robustness, however, comes at the cost of the CLR losing its optimality. The

proof of asymptotic uniform coverage of the CLR after slight modifications remains

valid.

The generalization of the results to the case of more than one endogenous regressor

seems to be extremely hard. The likelihood ratio statistic in the case of m endogenous

regressors (m > 1) is a function of the smallest eigenvalue of the appropriately defined

(m+1)× (m+1)-dimensional matrix Q. In the case of m = 2, this leads to a formula

for cubic roots, for m > 3 no explicit formula is available. Besides the fact that a

formula for the LR statistic is cumbersome for m = 2, 3 and unavailable for m > 3, we

would also have to find its conditional quantiles given the m-dimensional sufficient

statistic for the strength of instruments. Hiller(2006) made significant progress in
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creating a numerically feasible procedure for performing the CLR test for m > 1.

However, it is not obvious how one would invert the CLR test in such a situation

without a grid search. To the best of my knowledge, no results on optimality of any

test exists in a setting with more than one endogenous regressor.

APPENDIX: Proofs

Proof of Lemma 1. The proof is a direct corollary of Lemma 9, stating the claim

more formally. I want to point out, that according to Andrews, Moreira and Stock

(2006), the CLR is “nearly” optimal. The optimality of CLR has not been proven,

instead it was shown in simulations that CLR power curve cannot be distinguished

from the power envelope in all cases in a wide simulation study Andrews, Moreira

and Stock undertook. The word “nearly” in the lemma above, as well as parameter

ε in the lemma below, stay for available simulation accuracy.

Lemma 9 Let K(β0; β
∗, λ∗) be a two-sided power envelope for invariant similar tests

described in section 4 of Andrews, Moreira and Stock (2006), that is,

K(β0; β
∗, λ∗) = max

ϕ̃∈Ψ

(
Eβ∗,λ∗ϕ̃(Q(β0)) + Eβ∗2 ,λ∗2 ϕ̃(Q(β0))

)
,

where Ψ is a class of similar tests invariant with respect to Ok.

Let ϕ(β0, |Q(β0)|) be a similar test for testing H0 : β = β0 (or equivalently for

testing H0 : φ = φ0) invariant with respect to Ok such that for some ε > 0 we have

(
Eβ∗,λ∗ϕ(β0, |Q(β0)|) + Eβ∗2 ,λ∗2ϕ(β0, |Q(β0)|)

) ≥ K(β0; β
∗, λ∗)− ε, for all β0, β

∗, λ∗.

Let Cϕ be a confidence set for φ corresponding to ϕ. Then for all similar symmetric

Ok - invariant confidence sets C(ζ) for φ, we have the following statement about the

expected arc length:

Eφ,ρ(arc length C(ζ)) ≥ Eφ,ρ(arc length Cϕ(ζ))− εP i,

where Pi = 3.1416...

Proof of Lemma 9. For every symmetric Ok-invariant similar test ϕ̃, its power at

points (φ∗, ρ∗) and (φ∗2, ρ
∗) is the same (since power is an invariant risk function):

Eφ∗,ρ∗ϕ̃(|Q(ζ, φ0)|) = Eφ∗2,ρ∗ϕ̃(|Q(ζ, φ0)|) ≤ K(φ0; φ
∗, ρ∗).
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For a similar symmetric Ok-invariant set C(ζ), C(ζ) = {φ0 : f(φ0, |Q(ζ, φ0)|) ≥ 0}.
As a result,

Eφ,ρ(arc length C(ζ)) = Eφ,ρ

∫ Pi

0

I{f(φ0, |Q(ζ, φ0)|) ≥ 0}dφ0 =

=

∫ Pi

0

Eφ,ρ (1− ϕ̃(φ0, |Q(ζ, φ0)|)) dφ0 ≥
∫ Pi

0

(1−K(φ0; φ, ρ)) dφ0.

For the test ϕ we have

Eφ,ρ(arc length Cϕ(ζ)) =

∫ Pi

0

Eφ,ρ (1− ϕ(φ0, |Q(ζ, φ0)|)) dφ0 ≤

≤
∫ Pi

0

(1−K(φ0; φ, ρ) + ε) dφ0.

Proof of Lemma 2. Any Ok - invariant confidence set can be written as C(ζ) =

{φ0 : f(φ0, Q(ζ, φ0)) ≥ 0}. The statement of the lemma follows from two facts: 1)

Q(GF (ζ), Fφ0) = Q(ζ, φ0) for all orthogonal 2× 2 matrices F ; 2) for any φ0, φ ∈ S1
+

there exists an orthogonal 2× 2 matrix F such that φ0 = Fφ.

Proof of Lemma 3. From Andrews, Moreira and Stock (2007) it is known that

the conditional p-value p(m; q22) has the following form

p(m; q22) = 1− 2

∫ 1

0

P

{
χ2

k <
q22 + m

1 + q22s2
2/m

}
K4(1− s2

2)
(k−3)/2ds2 =

= 1−
∫ 1

0

Fχ2
k

(
q22 + m

1 + q22s2
2/m

)
g(s2)ds2,

where Fχ2
k
(x) = P {χ2

k < x} , g(x) = 2K4(1− x2)(k−3)/2.

Let fχ2
k
(x) be a derivative of Fχ2

k
(x). Let us also denote h(m; q22) = q22+m

1+q22s2
2/m

=

m q22+m
m+q22s2

2
; then the implicit function theorem implies that:

dm(q22)

dq22

= −∂p(m; q22)

∂q22

/
∂p(m; q22)

∂m
= −

∫ 1

0
fχ2

k
(h(m; q22)) g(s2)

∂h(m;q22)
∂q22

ds2∫ 1

0
fχ2

k
(h(m; q22)) g(s2)

∂h(m;q22)
∂m

ds2

,

d(m(q22) + q22)

dq22

=

∫ 1

0
fχ2

k
(h(m; q22)) g(s2)

(
−∂h(m;q22)

∂q22
+ ∂h(m;q22)

∂m

)
ds2

∫ 1

0
fχ2

k
(h(m; q22)) g(s2)

∂h(m;q22)
∂m

ds2

.

Now, we notice that

∂h(m; q22)

∂q22

= m
(m + q22s

2
2)− s2

2(m + q22)

(m + q22s2
2)

2
=

m2(1− s2
2)

(m + q22s2
2)

2
,
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∂h(m; q22)

∂m
=

(2m + q22)(m + q22s
2
2)−m(q22 + m)

(m + q22s2
2)

2
=

m2 + 2q22ms2
2 + q2

22s
2
2

(m + q22s2
2)

2
,

−∂h(m; q22)

∂q22

+
∂h(m; q22)

∂m
=

m2 + 2q22ms2
2 + q2

22s
2
2 −m2(1− s2

2)

(m + q22s2
2)

2
=

m2s2
2 + 2q22ms2

2 + q2
22s

2
2

(m + q22s2
2)

2
.

So we have that ∂h(m;q22)
∂m

> 0 and −∂h(m;q22)
∂q22

+ ∂h(m;q22)
∂m

> 0. Since fχ2
k
(h(m; q22)) g(s2)

is also always positive, it follows that f ′(q22) > 0.

Proof of Theorem 1. We know that the confidence set is a set of values β0 such

that the vector a0 = (β0, 1)′ satisfies the following inequality:

a′0
(
Ω−1/2A(ζ)Ω−1/2 − CΩ−1

)
a0 > 0.

Let

A = Ω−1/2A(ζ)Ω−1/2 − CΩ−1 = (αi,j), D = −4det(A).

Let x1,2 = −2α12±
√

D
2α11

. There are 4 different cases depending on the signs of D and α11:

1. If α11 < 0 and D < 0 the confidence set is empty.

2. If α11 < 0 and D > 0 then the confidence set is an interval [x1, x2].

3. If α11 > 0 and D < 0 then the confidence set is the whole line (−∞,∞).

4. If α11 > 0 and D > 0 then the confidence set is a union of two intervals

(−∞, x2] and [x1,∞).

Moreira (2002) stated that a CLR interval always contains the LIML point es-

timate, and as a result, is never empty. All other cases 2-4 could be observed in

practice.

Proof of Lemma 4.

l′(C) =

(
∂p(m; q22)

∂q22

− ∂p(m; q22)

∂m

)∣∣∣∣
m=M−C, q22=C

=

=

(∫ 1

0

fχ2
k
(h(m; q22)) g(s2)

(
−∂h(m; q22)

∂q22

+
∂h(m; q22)

∂m

)
ds2

)∣∣∣∣
m=M−C, q22=C

.

We already proved that the last expression is always positive.

Proof of Lemma 5. Let us denote Y = [y1, y2] and

Γ = Y ′Z(Z ′Z)−1Z ′Y − kχk,αΩ = (γi,j).
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The value of β0 belongs to the confidence set if and only if b0 = (1,−β0)
′ satisfies an

inequality b′0Γb0 < 0. Let D2 = det(Γ). Let x1,2 = b12∓
√

D2

b22
. There are 4 cases:

1. If γ22 > 0 and D2 < 0 then the confidence set is empty.

2. If γ22 > 0 and D2 > 0 then the confidence set is an interval [x1, x2].

3. Ifγ22 < 0 and D2 < 0 then the confidence set is the full line.

4. If γ22 < 0 and D2 > 0 then the confidence set is a union of two intervals

(−∞, x2] ∪ [x1,∞).

Proof of Theorem 2. As the first step we solve for the values of Q22(β0)

satisfying the inequality

−(M −Q22(β0))(N −Q22(β0))

Q22(β0)
< χ2

1,α.

We have an ordinary quadratic inequality with respect to Q22. If D1 = (M + N −
χ2

1,α)2 − 4MN ≤ 0, then there are no restrictions placed on Q22, and the confidence

region for β is the whole line (−∞,∞).

If D1 = (M + N − χ2
1,α)2 − 4MN > 0, then QT ∈ [N, M ] \ (s1, s2), where s1,2 =

M+N−χ2
1,α∓

√
D1

2
.

As the second step we solve for the confidence set of β0. The confidence set is a

union of two non-intersecting confidence sets: {β0 : QT (β0) < s1}∪{β0 : QT (β0) > s2}.
Let us denote

A1 = Ω−1/2A(ζ)Ω−1/2 − s1Ω
−1 = (α1

i,j),

A2 = Ω−1/2A(ζ)Ω−1/2 − s2Ω
−1 = (α2

i,j).

The confidence set contains β0 if and only if a′0A1a0 < 0 or a′0A2a0 > 0. Since

s1, s2 ∈ (N,M), the quadratic equations a′0A1a0 = 0 and a′0A2a0 = 0 have two zeros

each. Also note that since s1 < s2, then α1
11 > α2

11. As a result, we have 3 different

cases:

1. If α1
11 > 0 and α2

11 > 0, then the confidence set is a union of two infinite intervals

and one finite interval.

2. If α1
11 > 0 and α2

11 < 0, then the confidence set is a union of two finite intervals.
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3. If α1
11 < 0 and α2

11 < 0, then the confidence set is a union of two infinite intervals

and one finite interval.

Proof of Lemma 6. First, we note that according to Lemma 4 we have

argmaxβ0p(LR(β0); Q22(β0)) = argmaxβ0p(M−Q22(β0); Q22(β0)) = argmaxβ0Q22(β0).

It is easy to see that

argmaxβ0P{χ2
k > Q11(β0)} = argminβ0Q11(β0).

As a second step we prove that

(β = argmaxβ0Q22(β0)) ⇔ (β = argminβ0Q11(β0))

and

(β = argminβ0Q22(β0)) ⇔ (β = argmaxβ0Q11(β0)) .

Let x = Ω1/2b0, y = Ω−1/2a0. Then Q11(β0) = x′A(ζ)x
x′x , Q22 = y′A(ζ)y

y′y , and x′y = 0;

that is, x and y are orthogonal to each other. Because the matrix A(ζ) is posi-

tively definite, it has two eigenvectors that are orthogonal to each other. If β0 =

argmaxβ0Q22(β0), then x is the eigenvector of A(ζ) corresponding to the largest eigen-

value. Then y is the eigenvector of A(ζ) corresponding to the smallest eigenvalue,

and β0 = argminβ0Q11(β0). The second statement has a similar proof.

Since β̂LIML = argmaxβ0Q22(β0), we have that β̂LIML maximizes the p-value of

the AR test and the conditional p-value of the CLR. From the definition of β̃, we can

see that it minimizes the p-value of the AR test and the conditional p-value of the

CLR.

It is easy to notice that the LM statistic takes the value of 0 in two cases when

Q22(β0) = M and when Q22(β0) = N . But we know that M = maxβ0 Q22(β0) and

N = minβ0 Q22(β0), that is,

Argmaxβ0P{χ2
1 > LM(β0)} = {β̂LIML, β̃}.

Proof of Lemma 8. I check that supt,s

∣∣∣∂P (s,t)
∂s

∣∣∣ < ∞ and supt,s

∣∣∣∂P (s,t)
∂t

∣∣∣ < ∞.

Let h(s2) = q22+m
1+q22s2

2/m
= m q22+m

m+q22s2
2
, where m = LR(S, T ). Then

∂p(m(S, T ); T ′T )

∂S
= −2K

∫ 1

0

fχ2
k
(h(s2)) (1− s2

2)
(k−3)/2

(
∂h

∂m
· ∂m

∂S

)
ds2.
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Note that h(s2) ≥ m for all s2. Also note that

m ≥ 1

2

(
S ′S − T ′T + (S ′S + T ′T )− 2

√
(S ′ST ′T − (S ′T )2)

)
≥ S ′S.

The pdf of a χ2
k distribution has an exponential decay, and the term ∂h

∂m
· ∂m

∂S
is a

polynomial with respect to S and T . As a result,
∣∣∣∂P (s,t)

∂s

∣∣∣ → 0 as s →∞, and we can

bound it above for S ′S > C1 = const. Let us consider S ′S < C1. It is easy to check

that
∣∣∣∂P (s,t)

∂s

∣∣∣ → const as t →∞. So we can choose C2 such that
∣∣∣∂P (s,t)

∂s

∣∣∣ is bounded

if S ′S < C1 and T ′T > C2. Since
∣∣∣∂P (s,t)

∂s

∣∣∣ is a continuous function of s and t, it is

bounded on the set S ′S < C1, T
′T < C2. This proves the first statement. The proof

of the second one is totally analogous.

Proof of Theorem 3. From statement (12) and Lemma 8 we have that

sup
π
|P (S∗(π), T ∗(π))− P (S(π), T (π))| → 0 a.s.

Since pairs (S∗(π), T ∗(π)) and (SN(π), TN(π)) have the same distribution, it follows

that:

sup
π

Pπ {P (S(π), T (π)) ≤ α} ≤ Pπ

{
P (SN(π), TN(π)) ≤ α + ε

}
+

+ sup
π

Pπ {|P (S∗(π), T ∗(π))− P (S(π), T (π))| ≤ ε} ≤

≤ α + ε + Pπ

{
sup

π
|P (S(π), T (π))− P (S(π), T (π))| ≤ ε

}
→ α + ε

The last line relies on the fact that the method is exact for a model with normal

errors.

I thank Yury Baskakov, Gary Chamberlain, Victor Chernozhukov, JB Doyle, Jerry
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Figure 1. The expected arc length of the CLR, AR, and LM confidence sets for

k = 2, 3, 5, 10.
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Figure 2. Distribution of the length of the CLR, AR, and LM confidence sets for

λ = 8, r = 0, k = 2, 3, 5, 10.
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Figure 3. The expected length of intersection of the CLR, AR, and LM confidence

sets with fixed finite intervals for k = 5, β0 = 0.
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λ=8, r=0 k=2 k=3 k=5 k=10

P{CAR = ∅} 0.007 0.018 0.026 0.033

P{lenghth(CAR) = ∞} 0.048 0 0 0

P{lenghth(CLM) = ∞} 0.35 0.40 0.44 0.48

P{lenghth(CCLR) = ∞} 0.056 0.008 0 0

Table 1. Probability of having an empty or unbounded confidence set for the CLR,

AR, and LM tests. λ = 8, r = 0, k = 2, 3, 5, 10.
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