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RATIONAL BELIEF AND PROBABILITY KINEMATICS*

BAS C. VAN FRAASSEN{}

University of Toronto and University of Southern California

A general form is proposed for epistemological theories, the relevant factors
being: the family of epistemic judgments, the epistemic state, the epistemic
commitment (governing change of state), and the family of possible epistemic
inputs (deliverances of experience). First a simple theory is examined in
which the states are probability functions, and the subject of probability
kinematics introduced by Richard Jeffrey is explored. Then a second theory
is examined in which the state has as constituents a body of information
(rational corpus) and arecipe that determines the accepted epistemic judgments
on the basis of this corpus. Through an examination of several approaches
to the statistical syllogism, a relation is again established with Jeffrey’s
generalized conditionalization.

In this paper I shall describe what I take to be the general form
of an epistemological theory and consider two simple (but mutually
very different) sorts of theories of this form. In both cases, adaptations
of Richard Jeffrey’s probability kinematics play a central role.

1. Epistemological Theories. By an epistemological theory 1 mean a
theory which provides a representation of the main epistemic factors;
and these I take to be as follows. There is a family of epistemic
Jjudgments which comprise all expressions of full, partial and compara-
tive belief or assent. Each person has at any given time an epistemic
state, functionally related to the epistemic judgments which he makes,
or rather to which he is committed at that time. He has also an
epistemic commitment, a function determining how, atleast as presently
intended, the epistemic state would change under certain conditions.
The latter conditions, the deliverances of experience so to say, form
the epistemic input. Each of these four items is an epistemic factor.
In addition to their representation, the theory must also advance criteria
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166 BAS C. VAN FRAASSEN

of rationality by which the state and commitment are evaluated.

Being prior to the development of theory, the above remarks do
not constitute definitions, but are meant as an intuitive introduction
of the main concepts. I shall explore some kinds of epistemological
theory, admittedly simple and only partially developed. In this way,
I hope to throw light on the general structure of epistemological theory
and on the possibilities open to it.

2. Epistemic Judgments. As expressed in language, our beliefs reveal
a bewildering variety. A person may say that he believes that A,
or that he is fairly convinced that A, that he would not bet that
A, that it seems more likely to him that A4 than that B, or that,
assuming C, it seems as likely as not that 4. This series of schematic
examples is already rather far removed from the data, and it is not
at all clear that it does justice to those data. A theory will provide,
explicitly or implicitly, a typology of such judgments, and aim to
make sense of the ones that fit its catalogue.

The simple, deliberately restricted, typology which I shall use in
this paper is as follows. Epistemic judgments are made up from an
underlying set F of propositions, which include a tautology 7. There
are four types of epistemic judgments; their English readings are
“It seems less likely that A than that B’’; ‘It seems no less likely
that 4 than that B’’; ‘“The probability (to me) that 4 is no less
than r, no greater than s’’; ‘‘The probability (to me) that 4 is not
between r and s (inclusive).” So the second and fourth types are
the contraries of the first and third. An expression of full belief
I shall equate here with a judgment of second type in which B is
a tautology.

Merely giving the English readings does not yield a typology; for
those readings are at most clues to the intended relations among
those judgments. To represent those relations we must use a set
of valuations of the underlying propositions. These valuations must
at least have the property that they assign each proposition in F
an element of some partially ordered structure, and a numerical
interval. (The two may be identical, since those intervals are partially
ordered in the requisite way; and numbers we may regard as degenerate
intervals. Therefore, the valuations could be probability functions
defined on F; that is the most obvious example of valuations.) In
addition those valuations may be required to respect the structure
of the propositions in certain respects. Hence part of the specification
of the typology is the selection of a certain set of valuations, the
admissible epistemic valuations. Relations among epistemic judgments
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derive from these in obvious ways. Such a valuation satisfies ‘it
seems less likely that 4 than that B”’ exactly if it assigns 4 as first
element something that precedes (in the partial ordering in question)
the first element it assigns to B; it satisfies ‘‘the probability (to me)
that A4 is no less than r, no greater than s’’ exactly if the numerical
interval it assigns A is part of [r,s]. The contrary of a judgment is
satisfied exactly if the judgment itself is not. One epistemic judgment
implies another exactly if all the admissible epistemic valuations that
satisfy the first also satisfy the second; and so forth.

We may expect the theory to envisage some relationship between
valuations and epistemic states, and perhaps aiso between valuations
and truth conditions, frequencies, or chance. But prima facie such
relationships need not be very close. The valuations determine the
logical relationships among the epistemic judgments, and by varying
the set of valuations these relationships can be made as strict or
as loose as we see fit. The typology I have given is simple, but
the method of setting it up generalizes readily to more extensive
classifications.

3. Epistemic States: The First Theory. The simplest reasonable theory
that comes to mind in view of the preceding (and the literature) is
this:

(a) the set F of propositions is (representable as) a field of subsets
of a given set T,

(b) the admissible epistemic valuations are the probability func-
tions defined on F,

(c) the epistemic states are the admissible epistemic valuations.

The person is committed to an epistemic judgment at a given time
if and only if his epistemic state at that time satisfies the judgment.
It will be noticed therefore that his state at a time, and the judgments
to which he is committed at that time, can each be determined from
the other. There are no ‘‘hidden variables’’ in this theory: the state
can be determined uniquely if we can determine the judgments. To
complete the theory, we must describe the possible epistemic commit-
ments, which govern the change of state in response to epistemic
input. The first item on the agenda is therefore the representation
of such input.

4. Epistemic Input: A First Typology. How shall we describe the
deliverances of experience? If we were concerned not with epistemol-
ogy generally but with statistical practice, we could simply say: some
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proposition E is received as new evidence.' For a statistician, qua
statistician, no other aspect of experience would be relevant. Nor
would there be any question as to what that evidence E is; he is
employed to accept certain data as input for his calculations. If we
extrapolate from this paradigm to epistemology generally, we get what
I shall call the revelation model of belief change.

The epistemic commitment generally advanced as rational for such
input is given by the familiar formula

(©) P'(4) = P(A|E)

which yields the posterior probability P’ for a prior probability P
which assigns a positive value to E, when E is the total evidence.
I shall call this shift from P to P’ simple conditionalization; that
it is the correct formula, Hacking originally called the ‘‘Bayesian
dynamic assumption” (1967). (Note: I shall write ““P(4|E)” or
“P.(A)” for “P(4 & E)/P(E)” and use without comment will imply
that P(E) is positive.)

This representation of the deliverance of experience as a proposition
in F is an extreme position. A contrary extreme position denies that
the input can be represented in terms of propositions at all. I take
this to be intended when the input is described as ‘‘sensation,’’ or
an analogy is drawn with a robot capable of learning. The deliverance
of experience, it is then said, is pre-conscious, or at least pre-judgmen-
tal. There is no ‘‘reasoning oneself into’’ a new epistemic state, since
the state would already have changed when the propositions needed
as premises had been accepted, or when the epistemic judgments
needed as premises, had been arrived at in some other way. The
epistemic commitment then does not operate on the conscious level;
it is the function that takes sensation and epistemic state into new
epistemic state, and that this has happened shows up at the conscious
level in changed epistemic judgments. Sensation, epistemic input, is
then to be represented as a quantitative variable. Let us call this
the learning machine model of belief change.

There is a major difference between the two approaches, since
in the second, the question of justification effectively disappears.
As normally used, the question ‘““why did you change your mind?”’
has two senses. It could be a request either for explanation or for
justification. Within the revelation model, both senses make sense.
Asked why he now thinks it likely that 4, the person can say ‘‘because

'When two spaces are used (parameter or hypothesis space and observation or sample
space) I shall think of these as subspaces of a larger one (possibly produced by a
product construction), so that in a single context all propositions are represented by
measurable sets in a single space.
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I received evidence E.”” We, and he, can then investigate whether
he has responded rationally to the total evidence he received; specifi-
cally, did he follow formula (C)? On the learning machine model,
the justification sense of the question disappears, since any judgment
to the effect that E is the case, is part of the response to the input,
and that one’s sensation had this character or that would also be
a judgment which is part of that response. The criteria of coherence
among one’s present judgments would apply, of course, but no criteria
of rationality concerning the changes in response to the deliverance
of his experience are available to the person.

As third alternative I propose that the inputs, though not represent-
able as propositions, are representable in terms of propositions. The
idea is that in response to what happens to him, the person accepts
not propositions, but constraints on his posterior epistemic state. He
can phrase these as commands to himself (the simplest being ‘‘have
full belief that E!”’). These commands are the epistemic input, and
his epistemic commitment maps such input, plus prior epistemic state,
into posterior state.

In this way some questions of justification arise. Asked why he
now thinks it likely that 4, he can reply: in response to my experience,
I accepted constraint C on what my epistemic judgments should be,
and then I satisfied that constraint by changing my epistemic state
in manner Y, and part of the result was this new judgment concerning
A. We can then investigate his rationality in two ways: did the shift
in manner Y indeed satisfy constraint C, and was that a rationally
optimal way of satisfying the constraint? What we still cannot do,
of course, is ask him to justify his acceptance of that constraint
in response to the experience he had—but similarly, in the revelation
model there is no justification for why E was accepted. (Though
experience speaks with the voice of an angel.)

Since there are many sorts of constraints that can be imposed on
posterior epistemic states, we require also a typology of inputs. Still
following the simple theory, I propose as simple typology a classifica-
tion which I can introduce by means of some examples. In the present
simple theory, the set of propositions F is (represented as) a field
of subsets of a given set 7 and T can be taken to be the sample
space for the probability functions. Hence the following all make
sense:

(i) the posterior probability of E should be 1;
(ii) the posterior probability of 4 should be g(4) for each member
A of set X;
(iii) the posterior conditional probability of 4 given B should be
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q(4,B) for each couple (4,B) in family Y of such couples;
(iv) the posterior expectation of g should equal E(g) for each
member g of family Z of random variables.

The admissible valuations in the representation of epistemic judgments
will here play the role of demarcation of possible inputs. In the present
case that means, for instance, that a command of type (i) does not
represent a possible input if E is a self-contradiction.

The four types are not disjoint but of increasing generality. The
first clearly corresponds to the sole form of input that occurs in
the revelation model. The second corresponds to the sorts of input
discussed by Richard Jeffrey (1965) in connection with his generalized
conditionalization formula (of which (C) is a special case):

(J) P’ (4) = ={q(B)P(4|B): Bin X}

applicable only if X is a partition of the sample space, each of whose
members has a non-zero prior probability. The third generalizes that
in an obvious fashion; but (i)-(iii) are all special cases of (iv). For
the conditional probability P’(B|C) will be g(B,C) exactly if that
is the expectation value of the variable which takes value g(B,C)
on the complement of C, value 1 on the intersection of B and C,
and value zero elsewhere.

We have now arrived at a reasonable generalized formulation of
the subject of probability kinematics, which Jeffrey introduced. The
next question we face is: how is the posterior probability P’ determined
by the prior probability P and the constraint that represents the
epistemic input at that time? That is the question: what is the epistemic
commitment function? Since we are engaged in epistemology rather
than psychology, this is focused to: what is a rational epistemic
commitment function? What forms does the change from prior to
posterior epistemic state take, and how is it justified or justifiable
in specific cases? I shall broach these questions in the first place
through an exploration of the kinds of change that satisfy equation
(J) above.”

5. Probability Kinematics. Let us consider how two probability func-
tions P and P’, defined on the same field, may be related to each
other. Call P’ absolutely continuous with respect to P exactly if P’
assigns zero to all propositions to which P assigns zero. I shall consider
no other cases in this section (‘‘zeros are not raised’’ in changes

’In view of recent controversies (e.g. Kyburg 1977, Levi 1977) I should emphasize
that there are several principles which may reasonably be called ‘‘conditionalization’’
and that acceptance of the present typology of inputs implicitly rejects some of these.
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to posterior probability P’ to be discussed here). If the field is finite,
the following will necessarily hold then:

(JS) There is a finite measurable partition X and non-negative
numbers g(4) for A in X summing to 1, such that P'(B) =
5{q(4)P(B/A): A in X}.

For if the field is finite, and P’ absolutely continuous with respect
to P, then such a partition X can be formed by taking all but one
atom of the field to which P gives a positive value, and the union
of all remaining atoms.

If the field is not finite we have no such guarantee. Let us call
the transformation of P into P’ described in (JS) a Jeffrey shift with
base X. (Note: it will be part of the meaning of ‘Jeffrey shift”
here that the base is finite.) Let us call such a shift pure if none
of the coefficients g(A4) is zero, and call it prime if all but one of
them is zero. A prime shift is the same as what I earlier called a
simple conditionalization. We may note about these shifts that (a)
they are partial operations on the family of probability functions defined
on the field (since it is required that P give a positive value to each
member of the base); (b) each is equal to a weighted sum of prime
shifts; and (c) each Jeffrey shift is equal to a pure shift followed
by a prime shift. These remarks go some way toward justifying separate
discussion of pure shifts and of prime shifts.

5.1 The Identification Problem. When an epistemic state changes from
P to P’, which Jeffrey shift (if any) was applied? There are usually
many that lead from P to P’, if any one does; since the change
can be redescribed using any finer partition as base. I came to think
of this as a problem after reading Levi (1967, Section III). For if
the person is asked for a justification (‘“‘Why did you change to P’
from P?’’) he must surely first identify what change he made. The
answer at which I arrived is that there is always a ““‘minimum’’ Jeffrey
shift that can be identified as having effected the change, if any
has.

Let us call partition X’ a refinement of (or at least as fine as)
partition X (and the latter a coarsening of, or at least as coarse
as the former) exactly if every member of X’ is a subset of some
member of X. When X is the base of Jeffrey shift f, and P’ =
f(P), call X also a P-base of P’. If the Jeffrey shift is pure (and
in this subsection I shall consider only pure cases), this is symmetric
in P and P’. Given P, P’ and P-base X of P’, the shift f with base
X that leads from P to P’ is uniquely determined. What I mean
to show is that if P’ has any P-base, it has a coarsest one.
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5.2 The Coarsest P-base. Conditionalization, whether ordinary or Jef-
frey, is essentially orthogonal decomposition. Call P and P’ orthogonal
if they have the same domain and P(4) = 1 while P’(4) = 0, for
some A. The equation

P=3{a,P :iinI}

is an orthogonal decomposition of P exactly if I is countable, the
numbers g, are non-negative and sum to 1, and the probability functions
P, are all mutually orthogonal. Such a decomposition exists exactly
if there exists a countable partition X such that X = {4, i in I}
and

a,= P(A,); P,=P(—|A,) whena,# 0

for all 7/ in I (See van Fraassen 1979, Section 5.) Thus a Jeffrey
shift is a special case of orthogonal decomposition of the posterior
probability: all the P, equal the prior probability. At the same time
therefore, that prior can be decomposed on partition X as well.

Call A a P-eigenproposition of P’ exactly if P(—|4) = P'(—|A4),
both being well-defined; then partition X is a P-base for P’ exactly
if X consists of P-eigenpropositions of P’. Note that the relation
is symmetric. Finally, call 4 and B compatible for P and P’ exactly
if their union is a P-eigenproposition of P’. The following are equivalent
when A and B are disjoint P-eigenpropositions of P’:

1. A and B are compatible

2. P(A|AUB) = P'(A|AUB) and P(B|AUB) = P'(B|AUB)

3. P(4)/P'(4) = P(B)/P'(B)

4. The P-odds of A4 to B equal the P’-odds of 4 to B, i.e.
P(A)/P(B) = P’(4)/P'(B)

The last condition is perhaps the most intuitive: for members of a
P-base, compatibility is the same as equality of prior and posterior
odds. In (2), as in all similar assertions, it is to be understood as
implied that the terms are well-defined.

The equivalence of (3) and (4) is trivial, and that of (2) and (3)
hardly less so, given that 4 and B are disjoint. To prove the equivalence
of (1) and (2) we note that 4 and B are disjoint and use the general
principle P(E N F|E U D) = P(E|E U D) P(F|E):

P(X|A U B)=P(4|4A U B)P(X|4) + P(B|A U B) P(X|B)
P'(X|AU B)=P'(A|A U B)P'(X|A)
+P'(B|A U B) P’ (X|B)

Because 4 and B are P-eigenpropositions of P’, the lefthand quantities
are equal if and only if (2) holds.
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From this first lemma we draw the consequences that compatibility
istransitive, and alsothatif 4, . . ., 4, are disjoint P-eigenpropositions
of P’, while 4, is compatible with 4,,,, for i =1, ..., n — 1,
then the union of these propositions is also a P-eigenproposition of
P’. Thus compatible members of a P-base can be summed arbitrarily
to produce another P-base. (If P, P’ are countably additive, this remark
generalizes to the countable case.)

The second lemma is that if X and X’ are finite P-bases for P’,
they have a common coarsening which is also such a base. For let
X, X’ be thus. They have a coarsest common refinement Y which
is still obviously a P-base, namely

Y={ANB:Aisin X, Bisin Y, A and B are not disjoint}.

We now coarsen Y by unionizing any and all compatible elements
of it. By the preceding lemma this can be done in arbitrary order,
and produces still another P-base. Since Y too is finite, this process
comes to a stop; call the result X”. But if 4 is in X then A4 is the
union of {4 N B : B in X'}, whose elements are compatible, and
which appears therefore at least as a subset of some element of
X". Therefore X” is a coarsening of X; and by similar reasoning,
of X’ as well.

This leads then to the theorem: If P’ has any finite P-base then
it has a coarsest one.” For let Q be the set of all finite P-bases
of P’ and assume it non-empty. Q is partially ordered by the refinement
relation. Consider any chain R in (linearly ordered subset of) Q. The
cardinalities of its members form a strictly decreasing sequence of
natural numbers, and must therefore have a last member. So every
chain in Q has an upper bound in Q (its own last member), and
by Zorn’s lemma, Q has maximal (coarsest) elements. If X, X’ are
two such maximal elements, however, they have a common coarsening
by the second lemma—so there cannot be more than one such maximal
element.

5.3 The Justification Problem. Suppose the agent has shifted from
prior P to posterior P’, and has identified this as an instance of
Jeffrey shift f (whose base is the coarsest P-base of P’). We ask
him now to justify this move, or at least to explain why he thinks
that this is what he should have done, or failing that, why he considers

*When these notes were discussed in Jeffrey’s seminar, Persi Diakonis pointed out
that this theorem follows also from general results concerning the existence of minimal
sufficient statistics. The relation between bases and sufficiency is easily seen (as Zoltan
Domotor later remarked) from the definition of the partial pairwise sufficiency of
partition X for P and P’ by the equation ={I (P, — P",): 4 € X} = 0.
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this shift to be at least as good as any others he could have made,
and so forth.

The general form of his answer should surely be this, at least,
given the typology of inputs we have available: he claims that in
the situation, in view of his experience, he accepted certain constraints
on his posterior epistemic state, that his shift gave him a posterior
that does satisfy those, and that he managed to satisfy them in a
manner that was optimal in some or certain respects. Indeed, the
optimality will lie in his assertion that he did not jump to conclusions,
or renounce earlier epistemic judgments capriciously: that the shift
constitutes a minimal change needed to satisfy the constraints.

It was apparently first proved by B. Jamison that Jeffrey’s rule
(J) minimizes relative information in P’ with respect to P subject
to the constraint type (ii) in section 4 above.’ This was reported
by May and Harper (1976, pp. 141-143) before publication; (see Jamison
1974). Since then this point was developed by P. Williams (1978)
and by Domotor, Zanotti, and Hagen (1979); all note that it follows
from general results in information theory, but the last two papers
use it to provide interesting and general clarifications of probability
kinematics. I shall give a brief exposition (which I circulated in notes
before seeing the last two papers).

Using essentially Jaynes’ definition (see Hobson 1971, chapter 2)
the information in P’ relative to P, as measured in partition X, equals

IP',P,X) = 3{P’'(A)log (P'(4)/P(A)): A in X).

This is always non-negative, zero only if P is the same as P’, and
satisfies the decomposition principle:

If X' is a refinement of X then I(P',P,X') =
I(P',P,X) +1(P', P, X|X"),

where the conditionalized quantity I(P’, P, X|X’') equals
>{P'(4)I(P,,P,, X'). A in X}. This is also always non-negative.
It follows at once from this principle that if X’ is a refinement of
X, then the relative information as measured in X’ is at least as
great as it is measured in X.

Suppose that P’ must satisfy the constraint that P'(4) = g(4)
for each A4 inpartition X. Then all posterior P’ satisfying the constraint,
have the same amount of information relative to P as measured in

“Domotor has suggested that the credit should perhaps go to Jaynes, on the basis
of the opening article of R. D. Levine and M. Tribus (eds.) Maximum Entropy Formalism
Conference (Cambridge: MIT Press, 1979). My own acquaintance with the idea came
from May and Harper (1976).
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X. As measured in finer partitions, the amount of relative information
may differ. But we see at once that if P, = P/ for each 4 in X,
then the decomposition principle implies that I(P’,P,X) = I(P’, P,
X’) for any refinement X’ of X. Hence in that case, the relative
information is at a minimum as measured in any refinement of X—the
case in which equation (J) holds for exactly the partition and number
involved in the constraint.

5.4 Generalization of Constraints. As pointed out in Section 4, con-
straints on posterior probability can take the more general forms.
Jeffrey himself mentioned the case in which P’(B) = g(B) for each
member B of some family Y, which is not a partition. Any such
case can be put in the form of constraint type (iv), in which random
variables are required to have given posterior expectation values.
I shall not discuss this in full generality; restricting myself to finite
families of simple random variables.

A simple random variable is a finite linear combination of charac-
teristic functions, g(x) = ={a(4)I, (x): A in finite partition X}. Let
us begin with a simple such variable, and assume that P(4) is positive
for all 4 in X, and that X has more than one member. The constraint
is that

S{P’'(4d)a(4): Ain X)

equals a given number r. We wish to find the probability P’ satisfying
this constraint that has minimum information relative to P, as measured
in any refinement of partition X. Step one is clearly to make it a
Jeffrey shift, making X a P-base of P’, thus reducing the problem
to the previous case. It remains then to find the posterior probabilities
for members of X.

Let the prior probabilities of these propositions be p,, .. ., p, and
the posterior be called x,, . . ., x,, and let the corresponding values
a(A), for A in X be k,, . . ., k,. The variables x, range continuously
over the interval [0,1]. The functions

SOy 0x,)=2x log (xi/pi)
g (x,s .. x)=Cxk)—r

corresponding to relative information, and to the constant zero respec-
tively (if the constraint is satisfied), are continuously differentiable
on the open interval (0,1), so the Lagrange Multiplier Theorem applies.
That is, the extrema of f are found at the points where grad f =
m grad g’, m being a constant.
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9 9
grad f =<————f, .. .,-——f>
ax, ax,,

=(...,logx,+1—-1logp,,...)
gradg' ={(.. ., k,...)
so we can solve m grad g’ = grad f to get that
x,=e™ip,/e

So far, however, I have ignored the obvious further constraint that
the posterior probabilities in X must sum to 1. Hence all the x, must
be divided by their sum:

g, =x,/2x, = eMkiPi/Z

where Z is the normalization factor. In any concrete case, m can
be determined numerically, by considering the possible ways in which
grad f can be a multiple of grad g’.

The solution to our problem was therefore this: to set the posterior
expectation value of g equal to r, while minimizing relative information,
utilize the Jeffrey shift on base X (used to define g), with the coefficients
as determined above.

Generalizing to a finite family Y of variables uses the Lagrange
Theorem with constants m,, . . ., m_ and the solution

q. — ezmjk}'Pi/Z/
i

where ks the value taken by the j”* variable in Y on the i proposition
in partition X, and the sum is overindexj =1, ..., s.

We have seen therefore that in a broad range of constraints (much
broader than those initially discussed by Jeffrey), it is possible to
choose a (pure) Jeffrey shift that yields a posterior satisfying that
constraint while minimizing the information relative to the prior. (Note,
however, that I specifically excluded from discussion those cases
in which simple conditionalization (C) would occur; not because I
wish to rule them out but because Jeffrey shifts in general can be
regarded as composed of prime and pure shifts which can be made
in succession.)

5.5 Field’s Re-Parametrization. In a recent study (1978) Hartry Field
suggests that the deliverances of experience, since they lead to a
transformation of prior into posterior probability, should themselves
be characterized by a parameter that determines that transformation.
In the view I have developed so far, that shift is determined by
two factors: the deliverance of experience (represented by a command
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imposing a constraint on the posterior) plus the epistemic commitment
(which consists, in the simple theory, merely of a wish to make the
change optimal in some respect, e.g. minimize relative information).
Field’s parameter represents therefore, in my view, the combined
effect of two factors.

The epistemic input as conceived by Field specifies both a partition
X and a parameter b taking real values on that partition which sum
to zero. Only pure Jeffrey shifts are treated directly again; the partition
X is therefore not the trivial (one-member) one. Field’s formula for
the posterior probability of 4 in X is

(F) P'(4) = P(4)e""/Z

where denominator Z is the normalization factor (sum of all denumera-
tors), which places the values of P’ between zero and one.

We see at once that this is the special case of the last subsection,
in which a single simple random variable is constrained to have a
certain posterior expectation, while relative information is minimized.
But to say this is to ignore the important difference between Field’s
approach and the present one. For he conceives of the input repre-
sentable by commands of the form ‘‘multiply your prior probability
for A by factor e”“’/Z!”> While I would object that this conception
leaves no room for the justification question of how well, or badly,
an agent acted in his response to experience (assuming that he obeys
the command), I will briefly explore this alternative representation.

To begin let us note that a pure Jeffrey shift is identical to a change
in the odds for members of a given partition. That is, for a finite
partition X on which P is positive, and which is a P-base for P’,
the following are strictly equivalent:

(1) There are positive numbers g(4) summing to 1 such that P’ (A4)
= q(4)P(4),

(2) There are positive numbers k(4 B) such that P'(4)/P’'(B)
= k(AB)P(A)/P(B), for all 4 and B in X.

For we can define k(4 B) as q(4)/q(B); or conversely, we note
that the ¢(4) must sum to 1 and must be defined so that

q(A)P(4) = k(4B) q(B)P(B)[P(4)/P(B)]
hence
q(4) = k(AB)q(B) P(4).
So1l=232{k(4B)q(B)P(A): A in X} which means that
g(B) = 1/={k(AB)P(4): A in X}.
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Thus there is no doubt that each pure Jeffrey shift can be interpreted
equivalently as obeying a command of form ‘‘Redistribute your odds
on partition X by multiplying them by these given coefficients!”” But
(2) is in turn equivalent to

(3) There are real numbers b(A4) summing to zero such that P’ (4)
= P(A) "™ /2{P(B)e"®: B in X}.

In one direction, this equivalence is obvious, since k(4 B) can be
defined as from the g(A4). Conversely, given the numbers k(A4 B)
we can find the numbers b(A4) as follows. They must satisfy log
(k(AB)) = log (e°“’/ e*®) which equals b(4) — b(B). So, summing
over B in X, we get

3 {logk(AB): Ain X} = —nb(B)

where n is the cardinality of X and I used the fact that the b(A)
must sum to zero. These reflections immediately yield a definition of
b(B) in terms of the coefficients k(4B), and a short calculation
shows that so defined, (3) does follow from (2) as well.

The conclusion is that an alternative form of epistemic input can
be represented as a command to change the odds in a predetermined
manner. Such commands, if obeyed, give rise to pure Jeffrey shifts;
these can in turn be combined with prime shifts (in response to other
sorts of epistemic input) so as to yield any Jeffrey shift.

6. Epistemic States: A Second Theory. Not everyone is inclined to
accept the simple theory of the preceding three sections. Doubts are
of two sorts. First, it is argued that simple conditionalization does
occur and is in fact a form of acceptance, of the formation of full
belief. But acceptance of a proposition E as evidence is itself a fallible
process, and later experience must therefore be able to lead us to
revise the status of E. Neither simple nor Jeffrey conditionalization
allows for this: if P(E) is one, no Jeffrey shift will lead to a lower
probability for it.

The second doubt concerns the process of revision on the basis
of evidence which is compatible with all that has been accepted so
far. Traditionally, a proposition may be newly accepted as true in
accordance with some inductive procedure. For example, a hypothesis
may be accepted because itis, of a contemplated range of hypotheses,
the best explanation of the accepted evidence; or rejected because
it fares so badly as an explanation in comparison with the others.
Orthodox statistical testing is generally described similarly; inference
to the best explanation is a rule often cited and discussed in general
philosophy of science. Such procedures conflict, at least at first sight,
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with conditionalization, for something appears to be accepted which
goes beyond the evidence.

In response to these doubts, epistemic states and inputs may be
conceived more widely. I shall describe, first intuitively and then
precisely, such a more general conception. To begin with the state:
the person has a body of propositions, his (rational) corpus K; these
are the ones he fully believes, accepts, is willing to use as evidence,
what have you. Secondly, he has some function, I shall call it his
recipe, which determines what epistemic judgments he is committed
to, on the basis of what his corpus is: these are his accepted epistemic
judgments. The admissible valuations are exactly like those of the
first theory, namely probability functions on the underlying field F
of factual propositions. His accepted epistemic judgments determine
a subclass of these, the class of representing probabilities; namely,
just those valuations which satisfy all the accepted judgments.

Both the corpus and the recipe can change with time. In the case
of the recipe, there may be a number of further variables on which
it depends, such as the range of contemplated hypotheses, or a
reliability rating on the propositions in the corpus (reflecting how
well supported their membership in the corpus is). Thus we must
admit as epistemic input at least two new sorts of commands: to
change the corpus in some fashion, or to change (some variable
determining) the recipe.

Levi (1974) and Harper (1977) both have discussions of belief change
which suggest here a dynamics for change in the corpus. (I emphasize
that I am only adapting their remarks and not attempting to describe
their theories.) An input takes the form ‘‘Accept proposition E into
your corpus!”’ If E is consistent with the prior corpus, it is simply
added to form the posterior corpus. If not, then the corpus must
be revised in a way that satisfies the constraint (E belongs to the
posterior corpus) and is optimal in other respects (the change is in
some sense minimal, among those changes that satisfy the constraint).

An interesting question here is whether we should have feedback:
if we subsequently accept hypothesis H in accordance with some
inductive practice, such as inference to the best explanation, does
that mean merely that we become committed to the epistemic judgment
expressing full belief in H, or also that H is added to the corpus?
If the latter is the case, simple conditionalization must, apparently,
be violated by any such inductive practice.

The preceding two sections concern the epistemic commitment, that
is, the function which governs (at least, as far as the person’s present
intention goes) changes in the state in response to the deliverances
of experience. It does not seem to me that the sorts of input discussed
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previously (Section 4) become irrelevant: they yield constraints on
the posterior class of representing probabilities, and so indirectly,
on the remainder of the posterior state. Conversely, the new inputs
impose constraints indirectly on the posterior representing probabil-
ities. It is this relation that allows, presumably, some transfer from
the earlier discussion to this wider context. (The first theory is a
special case of the second theory, if we identify for example the
corpus with the set of propositions that receive value one, and so
forth. Below I shall suggest that in addition the first sort of theory
may be regarded from the second point of view, as a description
of the ‘‘surface phenomena.’”)

It may be clear that I have tried to make room in this scheme
also for the very disparate approaches of Giere (1975), Harman (1965),
Harper (1977), Salmon (1977), and Kyburg (1974). Since the scheme
is still relatively simple it would surely prove Procrustean if we tried
actually to fit their theories into its mold. One major difference among
these writers, not touched on here, concerns what sorts of propositions
go into the field of ‘‘factual’’ propositions, which furnishes the
members of the corpus. Will these include statements of objective
chance, or only of statistical distribution and relative frequency? The
latter alternative is espoused in different ways by Kyburg and Salmon;
the former, also in very different ways by Giere and Levi. For the
latter, Kyburg has explicitly given what I call here a recipe (his epistemic
judgments all being of the form ‘“The probability that 4 is no less
than r, no greater than s’’) which depends on no hidden variables.
For the case of objective chance, David Lewis (1978) and I (1980)
have given recipes that generalize the idea that my personal conditional
probability for A4, given that the chance of A4 equals r, equals r.
(I have learned from Jeffrey that this principle was originally stated
by Hacking; in (1980) I referred to it as the basic premise of Miller’s
paradox.)

7. Representation of These States. There is a field F of ‘‘factual”
propositions. A corpus is a set of such propositions. Criteria of
rationality may delimit among these the rational corpora through such
conditions as joint satisfiability or closure under entailment. Epistemic
judgments take the four forms described in the typology of Section
2. Admissible epistemic valuations are probability functions defined
on field F.

A recipe is a function that maps each corpus into a set of epistemic
judgments, the accepted epistemic judgments. Again criteria of rational-
ity may be applied; for example, if 4 is in the corpus, the judgment
expressing full belief in 4 should be among the accepted judgments,
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and if the corpus is a satisfiable set of factual propositions, then
the accepted judgments must be jointly satisfiable by some admissible
epistemic valuation.

Suppose the corpus is K, the recipe C, and hence the set of accepted
judgments, C(K). Then the set of admissible valuations (i.e. probability
functions on F) is the representor class or class of representing
probabilities, and I shall denote it C(K)*. The quadruple consisting
of K, C, C(K), and C(K)* is the epistemic state.

Because the representation of epistemic states which I have just
described bears an unmistakable resemblance to features of the
epistemological theories of Kyburg and Levi, we must consider the
question whether the representor class is convex. That depends on
the chosen typology of epistemic judgments. In the case of the one
I chose, that is indeed so; and it remains so for various extensions
thereof.

For suppose that P and P’ satisfy one of those epistemic judgments:
P(A) = P(B) and P'(A) = P’(B) for example. In that case eP(4)
+ (1 — e)P'(4) = eP(B) + (1 — e)P’(B), where e lies strictly
between zero and one. Similarly for the greater than relationship
and for membership in an interval.

Indeed, if we extended epistemic judgments to personal conditional
probabilities or personal odds, the representor class would still be
convex. If x/y = r and x'/y’ =< r then (ex + (1 — e)x')/(ey
+ (1 — e)y’) is also less than or equal to r. It is only if we start
adding judgments of the form ‘“The probability, to me, that 4, equals
either r or s’ or more generally ‘“The probability, to me, that 4,
lies in Borel class E’’ that this convexity disappears.

This will explain why convex classes of probability functions have
appeared at this point in epistemological theory. But I still think it
is too much an accident of typology to be a principle.

As to input, constraints on the posterior probability of the sorts
discussed in Section 4 appear here as constraints on the class of
representing probabilities of the posterior state. Thus, the (self-)com-
mand ‘‘Change the probability for 4 to ¢!”’ is satisfied if P(4) =
q for all P in the class of all probability functions that satisfy the
accepted epistemic judgment. So the command is to change the
epistemic state in such a way that this happens. However, in this
theory that can be done only by changing the rational corpus and/or
recipe. Such changes can be made in a way as to satisfy the new
constraint, and we may be able to evaluate the rationality of the
way actually adopted. But clearly we should admit also new sorts
of input, which relate directly to the corpus and to the parameters
on which the recipe depends ‘‘admit E into your corpus!’’ and ‘‘admit
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H into your range of contemplated hypotheses!’’ are two such new
sorts of input.

The new input has the indirect effect of constraining the class
of representing probabilities as well; but only relative to the epistemic
commitment which governs the reaction to that input. This effect
is an induced constraint on the representing probabilities; for example,
if E is consistent with the corpus and the epistemic commitment
holds the recipe constant when the input is the command ‘‘admit
E into your corpus!”’ then the satisfaction of that command will
presumably constrain the posterior representing probabilities to assign
1 to E. It seems to me that Levi’s critique of Jeffrey (Levi 1967)
would suggest here that this is the only way in which the probability
judgments concerning E can rationally change. But the only reason
for that which I can see is that otherwise, no criteria of rationality
can be applied to the change; and that is not cogent: we can evaluate
the manner in which the constraint is actually satisfied by comparing
the ways in which it could be satisfied.

Since all constraints therefore produce induced restraints on the
class of representing probabilities, we can think of probability kinemat-
ics here as the theory of ‘‘surface phenomena,”’ that is, of the changes
in accepted epistemic judgments, equivalent in this theory (due to
the typology of judgments adopted) to changes in the class of
representing probability functions. I shall now turn to a simple instance
of this kind of theory to provide a concrete case-study.

8. The Statistical Syllogism and Jeffrey Conditionalization. Let us
suppose that factual propositions are generated by simple statements
of two sorts: one attributes membership in certain classes to individuals,
and the other states what proportion of members of one class belong
to another class. The recipe has as paradigm the statistical syllogism,
of which the following is a typical example:

(1) 90% of Swedes are Protestant;

(2) Petersen is a Swede;

(3) I have no information relevant to the question whether
Petersen is a Protestant beyond 1 and 2 above.

Therefore: (4) the probability (to me) that Petersen is Protestant

equals 0.9.

Reichenbach, Salmon, and Kyburg are especially associated with
theories that will come to mind here. In order to emphasize the
difference between this point of view and the subjective Bayesian
one, it may be more apt to replace ‘‘to me’’ in (4) with ‘“‘relative
to my total body of information.”” It may also be convenient to take
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a cue from Kyburg’s terminology and rephrase (3) as ‘‘Petersen is
(relative to my body of information) a random Swede with respect
to the class of Protestants.”

The great difficulty will of course be to generalize the recipe leading
from corpus to epistemic judgments beyond this paradigm case. I
shall take up two possibilities with respect to a somewhat more complex
example, which was suggested by Levi’s recent critique of Kyburg.
Suppose that rational corpus K contains exactly three propositions
(except perhaps for ones that follow from these three):

A. Petersen is a Swede, and a resident of Malmo.

B. 90% of Swedes are Protestants.

(C-or-D). Either 85% or 95% of Swedes who are residents of
Malmo are Protestant.

Whatever recipe is adopted, it should yield probability one judgments
for each of these three propositions. I shall abbreviate these judgments
to: prob (4) = 1, prob (B) = 1, and prob (C-or-D) = 1, and say
that they hold in the epistemic state which has corpus K and such
a recipe.

What now of the probability that Petersen is Protestant? Kyburg
has advocated a point of view, according to which one can argue
as follows. The proportion of Protestants among Swedish residents
of Malmo is not less than 85%, no greater than 95%. That gives
us simply less precise, and not conflicting, information concerning
the question whether Petersen is Protestant, than 4 and B do together.
It is best to use the most precise information we have which is not
obviated by other information. Hence the correct recipe yields here
the judgment that the probability that Petersen is Protestant is 0.90.
Let us call this Policy I. (Please note that this is not meant as a
description of Kyburg’s much more sophisticated theory, but only
takes up for our simple case the sort of suggestions he makes in
a general way.)

A different line of thought is suggested by Salmon’s notion of
homogeneous reference classes.” Trying to follow that idea, I would
argue here: because of (C-or-D), the class of Swedes is specifically
believed not to be homogeneous with respect to Protestantism, that
is, it has sub-classes which are explicitly believed to contain given
different proportions of Protestants than the whole class does. But
as basis for our epistemic judgments we should choose the widest
reference classes not inhomogeneous relative to our information in

*>This may not correspond to Salmon’s use of the idea, especially as he concentrates
on objective rather than epistemic homogeneity.
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this sense. (Note the emphasis on ‘‘given’’: we know that the proportion
of Protestants in the unit class of Petersen is either zero or one
on merely general grounds. In a recent, unpublished manuscript Salmon
deals with similar difficulties in a way I won’t try to reproduce (Salmon
1977).) So in this case, and within the limits of our chosen typology
of epistemic judgments, we are led to the following as basic accepted
epistemic judgments to be yielded by the recipe: the probability that
Petersen is a Protestant is no less than 0.85, no greater than 0.95.
Let us call this Policy II.

The classes of representing probabilities are of course different
in the two cases; let us call them QI and QII respectively:

(a) Pis in QI iff P(4) = P(B) = P(C-or-D) = | and P(E) =
0.9

(b) P is in QII iff P(4) = P(B) = P(C-or-D) = 1 and P(E)
is in [0.85, 0.95].

Where ‘““E’’ abbreviates ‘‘Petersen is a Protestant.”’

We now consider two possible scenarios. In the first, corpus K
is augmented with proposition C, in the other with proposition D.
We assume that under these circumstances, the epistemic commitment
holds the recipe the same. Not only that, since C and D provide
exact proportions of Protestants in Swedish Malmdo, a subclass of
the Swedes, proposition B becomes irrelevant, and the recipe performs
a paradigm instance of the statistical syllogism. The probability of
Petersen being a Protestant changes in the one scenario to 0.85, in
the other to 0.95. The posterior classes of representing probabilities
are, independently of the policy adopted:

First scenario: P is in Q' iff P(4) = P(B) = P(C) = 1 and
P(E) = 0.85
Second scenario: P is in Q” iff P(4) = P(B) = P(D) = 1 and
P(E) = 0.95.

Note that these define the two posterior representor classes. Taking
“Q’’ as a variable ranging over QI and QII only, the principle of
simple conditionalization as applied to the representing probabilities
would here have the form:

(CL) (a) If P(C) is positive, and P belongs to Q then P_ belongs
to Q'
(b) If P’ belongs to Q' then P’ = P for some P in Q
(c) If P(D) is positive, and P belongs to Q then P, belongs
to Q”.
(d) If P” belongs to Q”, then P” = P, for some P in Q.
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If Policy II is followed, then (b) and (d) hold. For example, if P’
belongs to Q’, then it also belongs to Q, and P'(C) = 1 so P’ =
P,.. But (a) and (c) do not hold, for there is no reason to think
that if P belongs to QII and assigns a positive value to C, that P(E|C)
will be 0.85. What it will be, depends on what P(E&C) and P(C)
are.

If Policy I is followed, none of the four clauses in (CL) holds.
For (a) and (c) the reason is as above. For (b) and (d), imagine
that they do hold, and that P is in QI. Then we have:

P(C-or-D) =1
P(E|C)=10.85
P(E|D) =0.95

P(E) = 0.9 = P(E|C) P(C|C-or-D) + P(E|D)P(D|C-or-D)
= P(E|C)P(C) + P(E|D)P(D)
= 0.85 P(C) + 0.95 P(D)
= 0.85 P(C) + 0.95 (1 — P(C))
=0.95 — 0.1 P(C)

so that P(C) = 1/2 (where the calculations assume that C and D
are disjoint). But this is in contradiction with the definition of QI,
which makes it a class containing many functions P that do not assign
1/2 to C. Some of these will violate change (b) and some clause
(d).

I should like to point out that (CL) would fare better yet under
Policy II if I had not chosen such a small typology of epistemic
judgments. If the typology admitted judgments of the sort ‘“The
probability to me of E is in set R,”” where R can be any Borel set
of real numbers within the unit interval, and not merely an interval,
then the class QI would have been different: all its members would
have assigned either 0.85 or 0.95 to C. If in addition, we added epistemic
conditional judgments so as to express the independence of E and
C, and also of £ and D—which may seem reasonable here—then
clauses (a) and (c) would also have held. Hence principle (CL), which
adapts simple conditionalization could have held for the Salmon-like
Policy II, if it were not for the restricted form of our typology of
judgments.

Let us now go on to adapt similarly the rule of Jeffrey conditional-
ization to this case. Classes QI, QII, Q, Q’, Q” are all as before.

(JL) There are Jeffrey shifts f and g such that
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@) if P is in Q, and P(C) is positive, then fP is in Q' and
if P(D) is positive, gP is in Q”;

(i) if P’ is in Q' then P’ = fP for some P in Q; and if
P"is in Q" then P” = gP for some P in Q.

That (JL) is correct in all respects is easy to establish. For Policy
I, choose as base for f the partition {C N E, C N not-E, not-C}.
Define f to be the shift:

fP(Y) = 0.85 P(Y|C N E) + 0.15 P(Y|C N not-E) +
0P(Y|not-C)

This is not a pure shift, but is a Jeffrey shift. We note that if P
is in QI then fP will assign one to A, B, and C, and that fP(E)
= 0.85 as required, provided P(C) was positive. Secondly, if P’ is
in Q’, we have P'(4) = P’(B) = P'(C) = 1 and P'(E) = 0.85.
We find P as follows:

P(Y)=0.9P'(Y|EN C)+ 0.1 P"(Y|not-E N C)

The function P so defined assigns 0.9 to E, and 1 to 4, B, (C-or-D);
hence belongs to Q. But also,

fP(Y) = 0.85 P(Y|C N E) + 0.15 P(Y|C N not-E)
=0.85 P/(Y|C N E) + 0.15 P'(Y|C N not-E)
= P'(Y)

for since P(C) = P’(C) = 1, the conjunction with C makes no
difference; and P was defined so that P(—|E) = P’(—|E); and P’ (E)
= 0.85.

So (JL) is correct if Policy I was adopted; for of course g can
be defined similarly. In the case of Policy II exactly the same argument
works. For in the argument for clause (i) the fact that P(E) = 0.9
if P is in QI is needed only to ensure that P(E) is positive. For
clause (ii), if we define f exactly as above, we find a function in
QI, which is a subclass of QII.

The conclusion is therefore that whether Policy I or II is chosen,
and even while sticking to our smallish typology of epistemic judg-
ments, Jeffrey conditionalization (as adapted here) correctly describes
the change from prior to posterior representing probabilities. Although
the example considered is still relatively simple, and the form of
theory also, I consider this good evidence that Jeffrey conditionaliza-
tion is compatible with a range of epistemological theories that extends
well beyond the one for which it was originally designed.
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