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Interpreting the Quantum World. By Jeffrey Bub. Cambridge University
Press, Cambridge, United Kingdom, 1997, xiv+ 298 pp., $49.95 (hardcover).

Jeffrey Bub himself once mentioned that whenever someone arrives at a
position in the philosophy of quantum mechanics s/he seems to lose
momentum. Here we have a clear counterexample: since his first book on
the subject in 1974, which pioneered many of the subsequent development,
Bub has gained a great deal of momentum. His position today has the
additional virtue of providing sufficient conditions for the tenability of
a whole range of alternative interpretations, thus locating quite clearly
many of the diverse ideas found in recent literature. Moreover, he can
demonstrate optimal desirable properties for his own favorite interpretation
within that range.

For physics students and for much of the general public, interpretation
of quantum theory begins with certain mystifying pronouncements by the
great scientists of Copenhagen. Familiarity and authority have dulled the
sense of mystery, and left us with remnants delicately balanced between
vacuity and inconsistency. For the specialist, however, the story of inter-
pretation begins a few years after the Copenhagen breakthrough with von
Neumann’s unification of matrix and wave mechanics in the Hilbert space
formalism. Not that this had its meaning written on its face. Von Neumann
strove mightily to add some, through his discussion of measurement
( `̀ collapse of the wave packet,’’ `̀ projection postulate’’) and of propositions
representable by projection operators. Fundamental to his effort was what
is now commonly called the `̀ eigenstate± eigenvalue link.’’ That is the
semantic rule which says that an observable pertaining to a given system
has a value if and only if the system is in the corresponding eigenstate of
that observable. If that is so, then not only do incompatible observables
never have simultaneous values ± ± but in fact most of time most observables
have no definite value at all. Accordingly, to assure that at least the out-
come of a measurement ( and the measured observable at that time) have
a definite value, that `̀ collapse’’ postulate had to be added.
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That is the beginning of the story; the latest developments and perhaps
the denouement (but that is debatable) come to us in Jeffrey Bub’s new
book Interpreting the Quantum World .

To begin Bub shows clearly how the ( in)famous measurement problem
and its unsolvability derive directly from the eigenstate± eigenvalue link.
(Let us abbreviate to `̀ EE-link.’’ ) The options are: either to change the
theory or to reject that interpretative principle. Such versions as von
Neumann’s (or the more recent GRW) which postulate collapse, as inter-
ruption to the reign of the SchroÈ dinger equation, are changes to quantum
theory, in Bub’s view. His book is devoted to the second option, originally
mooted by Henry Margenau in response to the Einstein ± Podolsky± Rosen
paradox, but only recently much explored. Bub presents a fundamental
result ( the Bub ± Clifton uniqueness theorem) which selects a precise spec-
trum of interpretations that escape the unsolvable measurement problem
under certain `̀natural’’ constraints.

Quick aside: what seem like a few natural constraints to one person
may seem intolerable to another. In the last part of this review I’ll discuss
how much is left out from Bub’s range of admissible interpretations.

So what is Bub’s approach? Bub follows von Neumann in the represen-
tions of such propositions as `̀ Observable m has value k ’’ by the k-eigenspace
of m ( the set of pure eigenstates of m corresponding to value k , a subspace
of the relevant Hilbert space). Undoubtedly this identification was originally
linked to the EE-link. But there is separate motivation for this. The following
more basic principle was implicit in much of the early discussion:

Identity of Observables : If the probabilities for measurement out-
comes for observables m and m ¢ are the same for every QM state of any
system to which m and m ¢ both pertain [ if m , m ¢ are `̀ statistically equiv-
alent’’] , then m = m ¢ .

Equivalently : If observables m and m ¢ are represented by the same
(Hermitian) operator, then m= m ¢ .

Given this conviction there is a one-to-one relation between observables
and their representing Hermitian operators. Hence it is possible to repre-
sent the propositions which assign values to observables by the eigenspaces
of the corresponding operators. There are also interpretations which run
counter to this principle, but Bub accepts it.

So there we have the propositions whose truth value was settled by the
quantum state itself as long as the EE-link was assumed. At this point
( after rejecting the EE-link) all we can say is that some of these proposi-
tions are true, some are false (=contraries to true propositions), and some
are not truth-valued at all (when the observable has no definite value) .
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Without the EE-link we need to lay down new conditions on which
propositions can be true or false when the quantum state is given. What is
the set of truth-valued propositions like? Logic requires us to say that if
one proposition entails another, then the second is true if the first is.
Moreover, if sets of propositions have greatest lower and least upper
bounds± ± as is indeed the case for subspaces± ± then other familiar bits of
logic appear. These correspond to the familiar rules governing `̀and’’ and
`̀or.’’ If we assume this (and not all interpretations go along with it), then
the truth-valued propositions form a lattice, a sublattice of the lattice of
subspaces of Hilbert space. But they cannot form the entire lattice of
subspaces± ± it is not possible to assign truth values to all the propositions,
i.e., definite values to all the observables, while respecting logic in this way.
That follows from the famous `̀no-go’’ theorems about hidden variables.

So, how large can the lattice of truth-valued propositions be? It is
certainly possible to assign a value to one observable, hence to assign truth
values to all the propositions `̀R has value k’’ for a given observable R.
These propositions form a Boolean sublattice. Can such a sublattice be
expanded; and if so, how far?

Here is Bub’s idea. Supposes that one observable R has privileged
status, in that the lattice of truth-valued propositions is a function D(e, R )
of the quantum state e and the observable R. Presumably at least some of
the eigenspaces of R belong to it± ± or all of them perhaps. What more
would we like? Why not impose a few more desiderata, and then see if we
can identify what that function must be like?

Crucial to the empirical content of quantum theory are the answers to
questions of form: if observable S is measured, what is the probability that
value k is found? These answers come from Born’s rule for calculating
probabilities. But they are notoriously hard to interpret, and we cannot
think of them all together as simply constituting a measure of our
ignorance. But what if we look only at D (e, R) , the truth-valued proposi-
tions? Can we construe those questions as just asking `̀what is the prob-
ability that S̀ has value k ’ is true’’ (when the k-eigenspace of observable S
is in D(e, R) ) , and interpret the answer as a mere measure of ignorance?
After all, if we fix what the lattice of truth-valued propositions is, we are
still ignorant of how truth and falsity are distributed in it. That ignorance
can have a measure, and it seems natural to identify it with the Born prob-
ability.

How natural? Well, it would certainly follow at once if we assume that
measurement of S will reveal the truth if S already has a definite value.
That is not so easy an assumption to motivate when the EE-link has been
given up. True: a good measurement of S will not change the quantum
state if that state was already an eigenstate of S . But in the present context
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we are not assuming that S had a definite value only if it was in an
eigenstate! In the absence of a motivating argument we should expect to
see interpretations that do not agree. Nevertheless, it would be a `̀nice’’
feature of the interpretation if Born’s calculations can be so simply
construed.

Now we come to the Bub ± Clifton theorem. Its proof is by a beautiful
symmetry argument, on the additional premise that D(e, R) is preserved
under the automorphisms that preserve e and R. (To put it another way:
the identity of D (e, R) is assumed to be a function of e and R alone, and
no other factors are relevant to the question of which propositions have a
truth value.) The result proved is then that the above desiderata determine
D(e, R) uniquely.

So now all we need to ask is: what is D(e, R) like then; i.e., what is
the set of propositions with definite truth values like, on the suppositions
of this theorem? That is also really quite simple.

Let me first state the answer in precise, technical form, and then give
it a more intuitive gloss. D(e, R) is generated from a set of rays (1-dimen-
sional subspaces). First take all the projections of state e onto the eigen-
spaces of R to which e is not orthogonal. Let’s call the set of these D 1.
Next take the set of all rays that are orthogonal to all the members of D 1.
That second set (call it D 2) is a subspace, namely the orthocomplement of
the subspace spanned by D 1. Obviously it includes all the eigenspaces of
R to which e is orthogonal. Now D(e, R) is the lattice generated by D 1 and
D 2 together ( i.e., D(e, R) is the smallest lattice of subspaces that contains
both D 1 and D 2).

Let us put this in more intuitive dress. Those rays are very informative
propositions. Each member f of D 1 is an eigenstate of R corresponding to
some eigenvalue Ef . Clearly the Ef-eigenspace belongs to D (e, R) in that
case. So then the proposition `̀R has value Ef ’ ’ is truth-valued. Notice that
these are precisely the cases which receive a positive Born probability in
state e ( i.e., there is a positive probability that if R is measured on a system
in state e, the value Ef will be found). Let us call such propositions about
R `̀allowed by e.’’ If the Born probability for eigenvalue r of R is 0 in
state e, let’s call the proposition that R has value r `̀disallowed by e.’’ Since
all the r-eigenstates of R for which that is the case belong to D 2, all those
propositions about R that are disallowed by e are also truth-valued.

So far so good; but of course this lattice D (e, R) contains many more
similar propositions about other observables. For example, the projection
of e onto the 1-eigenspace of R may also be an eigenstate of a quite dif-
ferent observable S , corresponding to eigenvalue 2 of S , say. In that case
the proposition that S has value 2 will also be truth-valued. We can divide
the truth-valued propositions about any observable S into those allowed
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by e and those disallowed by e in a similar way (but not apply these labels
to propositions which are not truth-valued) .

Thinking of it this way, it is understandable how the Born probabil-
ities can be recovered as a possible measure of ignorance about how the
truth values True and False are distributed in D(e, R) . Given that the
system is in state e, we may take it that all disallowed propositions are
definitely false. Thus the whole of D 2 should be treated as a region with
zero probability. We can then add that one of the rays in D 1 is a true
proposition, though we don’t know which, and we can propose (or inter-
pret) the Born probability for the eigenvalue Ef of R as the measure of
our ignorance about whether member f of D 1 is true. Starting in this way,
the probability assignment can be extended to the whole of D(e, R) by
additivity, without running into trouble with such `̀no-go’’ theorems as the
Kochen ± Specker result.

An interpretation along these lines results when a particular observ-
able is taken to have privileged status. This specification might be once and
for all or it might depend on the state. Bohm chose position for this role,
once and for all. Von Neumann’s EE-link chose a privileged observable
very tightly linked to the state, namely the projection on the ray containing
that state. Bub has a different suggestion: given a proper selection of
observables for such privilege, the measurement problem will disappear.

Here we find the most important conceptual gain of this approach. To
explain how the values of the privileged observable can change with time,
Bub adapts a proposal by John Bell (as elaborated by Vink). This account
of the dynamics of values, together with the above construal of the Born
probabilities, provides a very satisfactory corollary about what happens in
a measurement. The measurement outcome and the value of the measured
observable are both definite, and correspond to each other, at the end of
measurement.

I am passing rapidly over some difficult passages here. In a measure-
ment we deal with a composite system of measured object and measuring
apparatus. In the above discussion I focused on the total system, assumed
to be in a pure state. The two component parts will be in mixed states, and
the observables pertaining to the components will be functions of those
which pertain to the total system. Obviously the nice corollary about
measurement is forthcoming only when the `̀ right’’ observable is privileged.
The `̀pointer observable’’ pertaining to the apparatus and the measured
observable must be properly related to the privileged observable. Because
of the entanglement of the two systems during the measurement interac-
tion, it will suffice if either the measured observable or the pointer observ-
able receives the privileged status. If we assume that either will take on a
definite value at the end of measurement, then so will the other.
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How compliant will nature be? Is it a question of fact, which observ-
ables are privileged in nature in this way? Can we assume that nature will
privilege just those observables that we have a special interest in? But
perhaps that is the wrong question to ask here. Quantum mechanics works;
the task is to propose an interpretation that makes sense of how it works.
That proposal can be precisely that nature privileges certain observables
under certain circumstances, so that the measurements in which we have an
interest have definite outcomes. Bub has therefore presented us with no
mean achievement: an explanation of how a certain range of interpretations
have the conceptual resources to change the measurement problem from
unsolvable riddle to solved conundrum.

We have seen therefore that we have here a major contribution to the
debates concerning the interpretation of quantum mechanics. In addition,
the wide scope of these results is illuminating. They give us a new insight
into a number of earlier interpretations which Bub is able to locate with
respect to his own. But I do want to enter a demurral here to the claims
of universality made in the book’s early pages (e.g., 1, 4, 5). The uniqueness
interpretation does not characterize the entire range of `̀no collapse’’ inter-
pretations, nor that of all modal interpretations, and certainly not of all
tenable interpretations.

Of course, Bub is quite clear on this. His claims of universality should
be taken as relative to the underlying program. That point is made quite
clearly in the Coda, particularly pages 240 and 241 around the quote from
von Neumann. It is especially clear if those passages are read with the
parable about the 19th century math student (pp. 115± ± 117) in mind.

But it may still be illuminating for us if we take stock of how other
interpretations can and do differ from the range that Bub characterizes
here. To begin, the representation of `̀Observable A has value k ’’ by the
k-eigenspace of the operator that represents A rules out quite a bit. First
of all it rules out that an observable can have values other than its eigen-
values (as happens in the Bohm± Hiley way of dealing with observables
other than position). Second, it rules out ’ ’de-occamized’ ’ and `̀ contextual’’
interpretations in which a single observable ambiguously represents several
distinct though statistically equivalent observables. Third, by taking all the
subspaces as propositions and respecting their lattice structure, Bub rejects
doubts about the meaningfulness of conjoining value attributions to incom-
patible observables. (For example, in Healey’s 1988 interpretation the set of
truth-valued propositions is not closed under logical conjunction.)

Some of these limitations of the uniqueness theorem are pointed out
in a paper by J. L. Bell and Clifton (Int. J. Theor . Phys. 34, 2409± 2421
(1995) ). As they also point out, the interpretation this reviewer proposed
( `̀Copenhagen variant of the modal interpretation’’) is not covered. There
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the EE-link is violated only when the state is not pure. The divergence from
orthodoxy will in general appear for the components of many-body systems.
For those components will typically be in mixed states even when the total
systems are themselves in pure states. Measurement and SchroÈ dinger’s cat
are typically represented as dynamic evolution of composite systems
(possibly with the environment as one component) . The desire for values
concerns observables that pertain to individual components ( such as the
cat, or the pointer on the measuring apparatus). Thus the shared goal to
do justice to our intuitions in those cases can perhaps be met without
abandoning the EE-link for pure states. In other respects there are signifi-
cant similarities between this and Bub’s interpretations, such as adherence
to the Identity of Observables principle and hence the representability of
propositions by subspaces.

We may note that one intuitive reading of the original Bohm inter-
pretation also cannot belong to the range characterized by Bub. I mean
this: that position is the only observable that ever has a value. A quick
look at the lattice D(e, R) shows that there will in general be many observ-
ables other than the privileged observable itself which receive true and false
value attributions. The reason is that the propositions concerning R ’s value
do not exhaust the lattice of truth-valued propositions.

These points are not drawbacks to Bub’s interpretation, nor do they
diminish its virtues or the importance of his general results. They only
mean that still more general results are in the offing (and indeed, the results
of the Bell and Clifton paper are more general) . The virtues Bub can claim
are indisputable, and his achievement gives us a truly successful and
illuminating way to understand quantum theory. The book is a must for
everyone in the field.
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