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GEOMETRY AND EMPIRICAL SCIENCE 
C. G. HEMPEL, Queens College 

1. Introduction. The most distinctive characteristic which differentiates 
mathematics from the various branches of empirical science, and which ac- 
counts for its fame as the queen of the sciences, is no doubt the peculiar certainty 
and necessity of its results. No proposition in even the most advanced parts of 
empirical science can ever attain this status; a hypothesis concerning "matters 
of empirical fact" can at best acquire what is loosely called a high probability 
or a high degree of confirmation on the basis of the relevant evidence available; 
but however well it may have been confirmed by careful tests, the possibility 
can never be precluded that it will have to be discarded later in the light of 
new and disconfirming evidence. Thus, all the theories and hypotheses of em- 
pirical science share this provisional character of being established and accepted 
"until further notice," whereas a mathematical theorem, once proved, is estab- 
lished once and for all; it holds with that particular certainty which no subse- 
quent empirical discoveries, however unexpected and extraordinary, can ever 
affect to the slightest extent. It is the purpose of this paper to examine the na- 
ture of that proverbial 'mathematical certainty" with special reference to ge- 
ometry, in an attempt to shed some light on the question as to the validity of 
geometrical theories, and their significance for our knowledge of the structure 
of physical space. 

The nature of mathematical truth can be understood through an analysis of 
the method by means of which it is established. On this point I can be very 
brief: it is the method of mathematical demonstration, which consists in the 
logical deduction of the proposition to be proved from other propositions, previ- 
ously established. Clearly, this procedure would involve an infinite regress unless 
some propositions were accepted without proof; such propositions are indeed 
found in every mathematical discipline which is rigorously developed; they are 
the axioms or postulates (we shall use these terms interchangeably) of the theory. 
Geometry provides the historically first example of the axiomatic presentation 
of a mathematical discipline. The classical set of postulates, however, on which 
Euclid based his system, has proved insufficient for the deduction of the well- 
known theorems of so-called euclidean geometry; it has therefore been revised 
and supplemented in modern times, and at present various adequate systems of 
postulates for euclidean geometry are available; the one most closely related to 
Euclid's system is probably that of Hilbert. 

2. The inadequacy of Euclid's postulates. The inadequacy of Euclid's own 
set of postulates illustrates a point which is crucial for the axiomatic method in 
modern mathematics: Once the postulates for a theory have been laid down, 
every further proposition of the theory must be proved exclusively by logical 
deduction from the postulates; any appeal, explicit or implicit, to a feeling of 
self-evidence, or to the characteristics of geometrical figures, or to our experi- 
ences concerning the behavior of rigid bodies in physical space, or the like, is 
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8 GEOMETRY AND 'EMPIRICAL SCIENCE [January, 

strictly prohibited; such devices may have a heuristic value in guiding our efforts 
to find a strict proof for a theorem, but the proof itself must contain absolutely 
no reference to such aids. This is particularly important in geometry, where our 
so-called intuition of geometrical relationships, supported by reference to figures 
or to previous physical experiences, may induce us tacitly to make use of as- 
sumptions which are neither formulated in our postulates nor provable by means 
of them. Consider, for example, the theorem that in a triangle the three medians 
bisecting the sides intersect in one point which divides each of them in the ratio 
of 1:2. To prove this theorem, one shows first that in any triangle ABC (see 
figure) the line segment MN which connects the centers of AB and A C is parallel 
to BC and therefore half as long as the latter side. Then the lines BN and CM 
are drawn, and an examination of the triangles MON and BOC leads to the proof 
of the theorem. In this procedure, it is usually taken for granted that BN and 
CM intersect in a point 0 which lies between B and N as well as between C 

A 

M N 

a 
and M. This assumption is based on geometrical intuition, and indeed, it cannot 
be deduced from Euclid's postulates; to make it strictly demonstrable and inde- 
pendent of any reference to intuition, a special group of postulates has been 
added to those of Euclids, they are the postulates of order. One of these-to give 
an example asserts that if A, B, C are points on a straight line 1, and if B lies 
between A and C, then B also lies between C and A.-Not even as "trivial" an 
assumption as this may be taken for granted; the system of postulates has to 
be made so complete that all the required propositions can be deduced from it 
by purely logical means. 

Another illustration of the point under consideration is provided by the 
proposition that triangles which agree in two sides and the enclosed angle, are 
congruent. In Euclid's Elements, this proposition is presented as a theorem; 
the alleged proof, however, makes use of the ideas of motion and superimposition 
of figures and thus involves tacit assumptions which are based on our geometric 
intuition and on experiences with rigid bodies, but which are definitely not war- 
ranted by-i.e. deducible from-Euclid's postulates. In Hilbert's system, there- 
fore, this proposition (more precisely: part of it) is explicitly included among the 
postulates. 

3. Mathematical certainty. It is this purely deductive character of mathe- 
matical proof which forms the basis of mathematical certainty: What the rigor- 
ous proof of a theorem-say the proposition about the sum of the angles in a 
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1945] GEOMETRY AND EMPIRICAL SCIENCE 9 

triangle-establishes is not the truth of the proposition in question but rather a 
conditional insight to the effect that that proposition is certainly true provided 
that the postulates are true; in other words, the proof of a mathematical proposi- 
tion establishes the fact that the latter is logically implied by the postulates of 
the theory in question. Thus, each mathematical theorem can be cast into the 
form 

(PI1'2P3 . a a PN)-> T 

where the expression on the left is the conjunction (joint assertion) of all the 
postulates, the symbol on the right represents the theorem in its customary 
formulation, and the arrow expresses the relation of logical implication or en- 
tailment. Precisely this character of mathematical theorems is the reason for 
their peculiar certainty and necessity, as I shall now attempt to show. 

It is typical of any purely logical deduction that the conclusion to which 
it leads simply re-asserts (a proper or improper) part of what has already been 
stated in the premises. Thus, to illustrate this point by a very elementary ex- 
ample, from the premise, "This figure is a right triangle," we can deduce the 
conclusion, "This figure is a triangle"; but this conclusion clearly reiterates part 
of the information already contained in the premise. Again, from the premises, 
"All primes different from 2 are odd" and "n is a prime different from 2," we 
can infer logically that n is odd; but this consequence merely repeats part (in- 
deed a relatively small part) of the information contained in the premises. The 
same situation prevails in all other cases of logical deduction; and we may, there- 
fore, say that logical deduction-which is the one and only method of mathe- 
matical proof-is a technique of conceptual analysis: it discloses what assertions 
are concealed in a given set of premises, and it makes us realize to what we 
committed ourselves in accepting those premises; but none of the results ob- 
tained by this technique ever goes by one iota beyond the information already 
contained in the initial assumptions. 

Since all mathematical proofs rest exclusively on logical deductions from cer- 
tain postulates, it follows that a mathematical theorem, such as the Pythagorean 
theorem in geometry, asserts nothing that is objectively or Mieoretically new as 
compared with the postulates from which it is derived, although its content may 
well be psychologically new in the sense that we were not aware of its being im- 
plicitly contained in the postulates. 

The nature of the peculiar certainty of mathematics is now clear: A mathe- 
matical theorem is certain relatively to the set of postulates from which it is 
derived; i.e. it is necessarily true if those postulates are true; and this is so be- 
cause the theorem, if rigorously proved, simply re-asserts part of what has been 
stipulated in the postulates. A truth of this conditional type obviously implies 
no assertions about matters of empirical fact and can, therefore, never get into 
conflict with any empirical findings, even of the most unexpected kind; conse- 
quently, unlike the hypotheses and theories of empirical science, it can never 
suffer the fate of being disconfirmed by new evidence: A mathematical truth is 
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10 GEOMETRY AND EMPIRICAL SCIENCE [January, 

irrefutably certain just because it is devoid of factual, or empirical content. Any 
theorem of geometry, therefore, when cast into the conditional form described 
earlier, is analytic in the technical sense of logic, and thus true a priori; i.e. its 
truth can be established by means of the formal machinery of logic alone, with- 
out any reference to empirical data. 

4. Postulates and truth. Now it might be felt that our analysis of geometrical 
truth so far tells only half of the relevant story. For while a geometrical proof no 
doubt enables us to assert a proposition conditionally-namely on condition 
that the postulates are accepted-, is it not correct to add that geometry also 
unconditionally asserts the truth of its postulates and thus, by virtue of the 
deductive relationship between postulates and theorems, enables us uncondi- 
tionally to assert the truth of its theorems? Is it not an unconditional assertion 
of geometry that two points determine one and only one straight line that con- 
nects them, or that in any triangle, the sum of the angles equals two right angles? 
That this is definitely not the case, is evidenced by two important aspects of the 
axiomatic treatment of geometry which will now be briefly considered. 

The first of these features is the well-known fact that in the more recent 
development of mathematics, several systems of geometry have been con- 
structed which are incompatible with euclidean geometry, and in which, for 
example, the two propositions just mentioned do not necessarily hold. Let us 
briefly recollect some of the basic facts concerning these non-euclidean geome- 
tries. The postulates on which euclidean geometry rests include the famous 
postulate of the parallels, which, in the case of plane geometry, asserts in effect 
that through every point P not on a given line I there exists exactly one parallel 
to 1, i.e., one straight line which does not meet 1. As this postulate is considerably 
less simple than the others, and as it was also felt to be intuitively less plausible 
than the latter, many efforts were made in the history of geometry to prove that 
this proposition need not be accepted as an axiom, but that it can be deduced as 
a theorem from the remaining body of postulates. All attempts in this direction 
failed, however; and finally it was conclusively demonstrated that a proof of the 
parallel principle on the basis of the other postulates of euclidean geometry 
(even in its modern, completed form) is impossible. This was shown by proving 
that a perfectly self-consistent geometrical theory is obtained if the postulate 
of the parallels is replaced by the assumption that through any point P not on a 
given straight line I there exist at least two parallels to 1. This postulate obviously 
contradicts the euclidean postulate of the parallels, and if the latter were ac- 
tually a consequence of the other postulates of euclidean geometry, then the 
new set of postulates would clearly involve a contradiction, which can be shown 
not to be the case. This first non-euclidean type of geometry, which is called 
hyperbolic geometry, was discovered in the early 20's- of the last century almost 
simultaneously, but independently by the Russian N. I. Lobatschefskij, and by 
the Hungarian J. Bolyai. Later, Riemann developed an alternative geometry, 
known as elliptical geometry, in which the axiom of the parallels is replaced by 
the postulate that no line has any parallels. (The acceptance of this postulate, 
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1945] - GEOMETRY AND EMPIRICAL SCIENCE 11 

however, in contradistinction to that of hyperbolic geometry, requires the modi- 
fication of some further axioms of euclidean geometry, if a consistent new theory 
is to result.) As is to be expected, many of the theorems of these non-euclidean 
geometries are at variance with those of euclidean theory; thus, e.g., in the hy- 
perbolic geometry of two dimensions, there exist, for each straight line 1, through 
any point P not on 1, infinitely many straight lines which do not meet 1; also, 
the sum of the angles in any triangle is less than two right angles. In elliptic 
geometry, this angle sum is always greater than two right angles; no two straight 
lines are parallel; and while two different points usually determine exactly one 
straight line connecting them (as they always do in euclidean geometry), there 
are certain pairs of points which are connected by infinitely many different 
straight lines. An illustration of this latter type of geometry is provided by the 
geometrical structure of that curved two-dimensional space which is repre- 
sented by the surface of a sphere, when the concept of straight line is interpreted 
by that of great circle on the sphere. In this space, there are no parallel lines since 
any two great circles intersect; the endpoints of any diameter of the sphere are 
points connected by infinitely many different "straight lines," and the sum of 
the angles in a triangle is always in excess of two right angles. Also, in this space, 
the ratio between the circumference and the diameter of a circle (not neces- 
sarily a great circle) is always less than 2ir. 

Elliptic and hyperbolic geometry are not the only types of non-euclidean 
geometry; various other types have been developed; we shall later have occasion 
to refer to a much more general form of non-euclidean geometry which was like- 
wise devised by Riemann. 

The fact that these different types of geometry have been developed in mod- 
ern mathematics shows clearly that mathematics cannot be said to assert the 
truth of any particular set of geometrical postulates; all that pure mathematics is 
interested in, and all that it can establish, is the deductive consequences of given 
sets of postulates and thus the necessary truth of the ensuing theorems relatively 
to the postulates under consideration. 

A second observation which likewise shows that mathematics does not assert 
the truth of any particular set of postulates refers to the slatus of the concepts in 
geometry. There exists, in every axiomatized theory, a close parallelism between 
the treatment of the propositions and that of the concepts of the system. As we 
have seen, the propositions fall into two classes: the postulates, for which no 
proof is given, and the theorems, each of which has to be derived from the postu- 
lates. Analogously, the concepts fall into two classes: the primitive or basic con- 
cepts, for which no definition is given, and the others, each of which has to 
be precisely defined in terms of the primitives. (The admission of some unde- 
fined concepts is clearly necessary if an infinite regress in definition is to be 
avoided.) The analogy goes farther: Just as there exists an infinity of theoreti- 
cally suitable axiom systems for one and the same theory-say, euclidean ge- 
ometry-, so there also exists an infinity of theoretically possible choices for the 
primitive terms of that theory; very often-but not always-different axioma- 
tizations of the same theory involve not only different postulates, but also differ- 
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12 GEOMETRY AND EMPIRICAL SCIENCE [January, 

ent sets of primitives. Hilbert's axiomatization of plane geometry contains six 
primitives: point, straight line, incidence (of a-point on a line), betweenness (as 
a relation of three points on a straight line), congruence for line segments, and 
congruence for angles. (Solid geometry, in Hilbert's axiomatization, requires two 
further primitives, that of plane and that of incidence of a point on a plane.) 
All other concepts of geometry, such as those of angle, triangle, circle, etc., are 
defined in terms of these basic concepts. 

But if the primitives are not defined within geometrical theory, what mean- 
ing are we to assign to them? The answer is that it is entirely unnecessary to 
connect any particular meaning with them. True, the words "point," "straight 
line," etc., carry definite connotations with them which relate to the familiar 
geometrical figures, but the validity of the propositions is completely inde- 
pendent of these connotations. Indeed, suppose that in axiomatized euclidean 
geometry, we replace the over-suggestive terms "point," "straight line," "inci- 
dence," "betweenness," etc., by the neutral terms 'object of kind 1," " object of 
kind 2," "relation No. 1," "relation No. 2," etc., and suppose that we present 
this modified wording of geometry to a competent mathematician or logician 
who, however, knows nothing of the customary connotations of the primitive 
terms. For this logician, all proofs would clearly remain valid, for as we saw 
before, a rigorous proof in geometry rests on deduction from the axioms alone 
without any reference to the customary interpretation of the various geometrical 
concepts used. We see therefore that indeed no specific meaning has to be at- 
tached to the primitive terms of an axiomatized theory; and in a precise logical 
presentation of axiomatized geometry the primitive concepts are accordingly 
treated as so-called logical variables. 

As a consequence, geometry cannot be said to assert the truth of its postu- 
lates, since the latter are formulated in terms of concepts without any specific 
meaning; indeed, for this very reason, the postulates themselves do not make any 
specific assertion which could possibly be called true or false! In the terminology 
of modern logic, the postulates are not sentences, but sentential functions with 
the primitive concepts as variable arguments.-This point also shows that the 
postulates of geometry cannot be considered as "self-evident truths," because 
where no assertion is made, no self-evidence can be claimed. 

5. Pure and physical geometry. Geometry thus construed is a purely formal 
discipline; we shall refer to it also as pure geometry. A pure geometry, then,-no 
matter whether it is of the euclidean or of a non-euclidean variety--deals with 
no specific subject-matter; in particular, it asserts nothing about physical space. 
All its theorems are analytic and thus true with certainty precisely because they 
are devoid of factual content. Thus, to characterize the import of pure geometry, 
we might use the standard form of a movie-disclaimer: No portrayal of the char- 
acteristics of geometrical figures or of the spatial properties or relationships of 
actual physical bodies is intended, and any similarities between the primitive 
concepts and their customary geometrical connotations are purely coincidental. 
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1945] GEOMETRY AND EMPIRICAL SCIENCE 13 

But just as in the case of some motion pictures, so in the case at least of 
euclidean geometry, the disclaimer does not sound quite convincing: Histori- 
cally speaking, at least, euclidean geometry has its origin in the generalization 
and systematization of certain empirical discoveries which were made in connec- 
tion with the measurement of areas and volumes, the practice of surveying, and 
the development of astronomy. Thus understood, geometry has factual import; 
it is an empirical science which might be called, in very general terms, the theory 
of the structure of physical space, or briefly, physical geometry. What is the rela- 
tion between pure and physical geometry? 

When the physicist uses the concepts of point, straight line, incidence, etc., 
in statements about physical objects, he obviously connects with each of them a 
more or less definite physical meaning. Thus, the term "point" serves to desig- 
nate physical points, i.e., objects of the kind illustrated by pin-points, cross 
hairs, etc. Similarly, the term "straight line" refers to straight lines in the sense 
of physics, such as illustrated by taut strings or by the path of light rays in a 
homogeneous medium. Analogously, each of the other geometrical concepts has 
a concrete physical meaning in the statements of physical geometry. In view of 
this situation, we can say that physical geometry is obtained by what is called, 
in contemporary logic, a semantical interpretation of pure geometry, Generally 
speaking, a semantical interpretation of a pure mathematical theory, whose 
primitives are not assigned any specific meaning, consists in giving each primi- 
tive (and thus, indirectly, each defined term) a specific meaning or designatum. 
In the case of physical geometry, this meaning is physical in the sense just 
illustrated; it is possible, however, to assign a purely arithmetical meaning to 
each concept of geometry; the possibility of such an arithmetical interpretation 
of geometry is of great importance in the study of the consistency and other 
logical characteristics of geometry, but it falls outside the scope of the present 
discussion. 

By virtue of the physical interpretation of the originally uninterpreted primi- 
tives of a geometrical theory, physical meaning is indirectly assigned also to 
every defined concept of the theory; and if every geometrical term is now taken 
in its physical interpretation, then every postulate and every theorem of the 
theory under consideration turns into a statement of physics. with respect to 
which the question as to truth or falsity may meaningfully be raised-a circum- 
stance which clearly contradistinguishes the propositions of physical geometry 
from those of the corresponding uninterpreted pure theory.-Consider, for ex- 
ample, the following postulate of pure euclidean geometry: For any two objects 
x, y of kind 1, there exists exactly one object I of kind 2 such that both x and y 
stand in relation No. 1 to 1. As long as the three primitives occurring in this 
postulate are uninterpreted, it is obviously meaningless to ask whether the post- 
ulate is true. But by virtue of the above physical interpretation, the postulate 
turns into the following statement: For any two physical points x, y there exists 
exactly one physical straight line I such that both x and y lie on 1. But this is a 
physical hypothesis, and we may now meaningfully ask whether it is true or 
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14 GEOMETRY AND EMPIRICAL SCIENCE [January, 

false. Similarly, the theorem about the sum of the angles in a triangle turns into 
the assertion that the sum of the angles (in the physical sense) of a figure 
bounded by the paths of three light rays equals two right angles. 

Thus, the physical interpretation transforms a given pure geometrical the- 
ory-euclidean or non-euclidean-into a system of physical hypotheses which, 
if true, might be said to constitute a theory of the structure of physical space. 
But the question whether a given geometrical theory in physical interpretation 
is factually correct represents a problem not of pure mathematics but of empiri- 
cal science; it has to be settled on the basis of suitable experiments or systematic 
observations. The only assertion the mathematician can make in this context 
is this: If all the postulates of a given geometry, in their physical interpretation, 
are true, then all the theorems of that geometry, in their physical interpreta- 
tion, are necessarily true, too, since they are logically deducible from the postu- 
lates. It might seem, therefore, that in order to decide whether physical space is 
euclidean or non-euclidean in structure, all that we have to do is to test the 
respective postulates in their physical interpretation. However, this is not di- 
rectly feasible; here, as in the case of any other physical theory, the basic hy- 
potheses are largely incapable of a direct experimental test; in geometry, this is 
particularly obvious for such postulates as the parallel axiom or Cantor's axiom 
of continuity in Hilbert's system of euclidean geometry, which makes an asser- 
tion about certain infinite sets of points on a straight line. Thus, the empirical 
test of a physical geometry no less than that of any other scientific theory has to 
proceed indirectly; namely, by deducing from the basic hypotheses of the theory 
certain consequences, or predictions, which are amenable to an experimental 
test. If a test bears out a prediction, then it constitutes confirming evidence 
(though, of course, no conclusive proof) for the theory; otherwise, it disconfirms 
the theory. If an adequate amount of confirming evidence for a theory has been 
established, and if no disconfirming evidence has been found, then the theory 
may be accepted by the scientist "until further notice." 

It is in the context of this indirect procedure that pure mathematics and logic 
acquire their inestimable importance for empirical science: While formal logic 
and pure mathematics do not in themselves establish any assertions about mat- 
ters of empirical fact, they provide an efficient and entirely indispensable machin- 
ery for deducing, from abstract theoretical assumptions, such as the laws of 
Newtonian mechanics or the postulates of euclidean geometry in physical inter- 
pretation, consequences concrete and specific enough to be accessible to direct 
experimental test. Thus, e.g., pure euclidean geometry shows that from its pos- 
tulates there may be deduced the theorem about the sum of the angles in a 
triangle, and that this deduction is possible no matter how the basic concepts of 
geometry are interpreted; hence also in the case of the physical interpretation of 
euclidean geometry. This theorem, in its physical interpretation, is accessible to 
experimental test; and since the postulates of elliptic and of hyperbolic geometry 
imply values different from two right angles for the angle sum of a triangle, this 
particular proposition seems to afford a good opportunity for a crucial experi- 
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19451 GEOMETRY AND EMPIRICAL SCIENCE 15 

ment. And no less a mathematician than Gauss did indeed perform this test; by 
means of optical methods-and thus using the interpretation of physical straight 
lines as paths of light rays-he ascertained the angle sum of a large triangle de- 
termined by three mountain tops. Within the limits of experimental error, he 
found it equal to two right angles. 

6. On Poincare's conventionalism concerning geometry. But suppose that 
Gauss had found a noticeable deviation from this value; would that have meant 
a refutation of euclidean geometry in its physical interpretation, or, in other 
words, of the hypothesis that physical space is euclidean in structure? Not 
necessarily; for the deviation might have been accounted for by a hypothesis to 
the effects that the paths of the light rays involved in the sighting process were 
bent by some disturbing force and thus were not actually straight lines. The 
same kind of reference to deforming forces could also be used if, say, the euclid- 
ean theorems of congruence for plane figures were tested in their physical inter- 
pretation by means of experiments involving rigid bodies, and if any violations 
of the theorems were found. This point is by no means trivial; Henri Poincare, 
the great French mathematician and theoretical physicist, based on considera- 
tions of this type his famous conventionalism concerninig geometry. It was his 
opinion that no empirical test, whatever its outcome, can conclusively invalidate 
the euclidean conception of physical space; in other words, the validity of eu- 
clidean geometry in physical science can always be preserved-if necessary, by 
suitable changes in the theories of physics, such as the introduction of new 
hypotheses concerning deforming or deflecting forces. Thus, the question as to 
whether physical space has a euclidean or a non-euclidean structure would, 
become a matter of convention, and the decision to preserve euclidean geometry 
at all costs would recommend itself, according to Poincare, by the greater sim- 
plicity of euclidean as compared with non-euclidean geometrical theory. 

It appears, however, that Poincar6's account is an oversimplification. It 
rightly calls attention to the fact that the test of a physical geometry G always 
presupposes a certain body P of non-geometrical physical hypotheses (including 
the physical theory of the instruments of measurement and observation used in 
the test), and that the so-called test of G actually bears on the combined theo- 
retical system G* P rather than on G alone. Now, if predictions derived from G- P 
are contradicted by experimental findings, then a change in the theoretical struc- 
ture becomes necessary. In classical- physics, G always was euclidean geometry 
in its physical interpretation, GE; and when experimental evidence required a 
modification of the theory, it was P rather than GE which was changed. But 
Poincare's assertion that this procedure would always be distinguished by its 
greater simplicity is not entirely correct; for what has to be taken into considera- 
tion is the simplicity of the total system G P, and not just that of its geometrical 
part. And here it is clearly conceivable that a simpler total theory in accordance 
with all the relevant empirical evidence is obtainable by going over to a non- 
euclidean form of geometry rather than by preserving the euclidean structure 
of physical space and making adjustments only in part P. 
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16 GEOMETRY AND EMPIRICAL SCIENCE [January, 

And indeed, just this situation has arisen in physics in connection with the de- 
velopment of the general theory of relativity: If the primitive terms of geometry 
are given physical interpretations along the lines indicated before, then certain 
findings in astronomy represent good evidence in favor of a total physical theory 
with a non-euclidean geometry as part G. According to this theory, the physical 
universe at large is a three-dimensional curved space of a very complex geometri- 
cal structure; it is finite in volume and yet unbounded in all directions. However, 
in comparatively small areas, such as those involved in Gauss' experiment, eu- 
clidean geometry can serve as a good approximative account of the geometrical 
structure of space. The kind of structure ascribed to physical space in this theory 
may be illustrated by an analogue in two dimensions; namely, the surface of a 
sphere. The geometrical structure of the latter, as was pointed out before, can 
be described by means of elliptic geometry, if the primitive term "straight line" 
is interpreted as meaning "great circle," and if the other primitives are given 
analogous interpretations. In this sense, the surface of a sphere is a two-dimen- 
sional curved space of non-euclidean structure, whereas the plane is a two- 
dimensional space of euclidean structure. While the plane is unbounded in all 
directions, and infinite in size, the spherical surface is finite in size and yet un- 
bounded in all directions: a two-dimensional physicist, travelling along "straight 
lines" of that space would never encounter any boundaries of his space; instead, 
he would finally return to his point of departure, provided that his life span and 
his techinical facilities were sufficient for such a trip in consideration of the size 
of his "universe." It is interesting to note that the physicists of that world, even 
if they lacked any intuition of a three-dimensional space, could empirically 
ascertain the fact that their two-dimensional space was curved. This might be 
done by means of the method of traveling along straight lines; another, simpler 
test would consist in determining the angle sum in a triangle; again another in 
determining, by means of measuring tapes, the ratio of the circumference of a 
circle (not necessarily a great circle) to its diameter; this ratio would turn out to 
be less than 7r. 

The geometrical structure which relativity physics ascribes to physical space 
is a three-dimensional analogue to that of the surface of a sphere, or, to be more 
exact, to that of the closed and finite surface of a potato, whose curvature varies 
from point to point. In our physical universe, the curvature of space at a given 
point is determined by the distribution of masses in its neighborhood; near large 
masses such as the sun, space is strongly curved, while in regions of low mass- 
density, the structure of the universe is approximately euclidean. The hypothe- 
sis stating the connection between the mass distribution and the curvature of 
space at a point has been approximately confirmed by astronomical observations 
concerning the paths of light rays in the gravitational field of the sun. 

The geometrical theory which is used to describe the structure of the physical 
universe is of a type that may be characterized as a generalization of elliptic 
geometry. It was originally constructed by Riemann as a purely mathematical 
theory, without any concrete possibility of practical application at hand. When 
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Einstein, in developing his general theory of relativity, looked for an appropriate 
mathematical theory to deal with the structure of physical space, he found in 
Riemann's abstract system the conceptual tool he needed. This fact throws an 
interesting sidelight on the importance for scientific progress of that type of 
investigation which the "practical-minded" man in the street tends to dismiss as 
useless, abstract mathematical speculation. 

Of, course, a geometrical theory in physical interpretation can never be vali- 
dated with mathematical certainty, no matter how extensive the experimental 
tests to which it is subjected; like any other theory of empirical science, it can 
acquire only a more or less high degree of confirmation. Indeed, the considera- 
tions presented in this article show that the demand for mathematical certainty 
in empirical matters is misguided and unreasonable; for, as we saw, mathemati- 
cal certainty of knowledge can be attained only at the price of analyticity and 
thus of complete lack of factual content. Let me summarize this insight in Ein- 
stein's words: 

"As far as the laws of mathematics refer to reality, they are not certain; and 
as far as they are certain, they do not refer to reality." 

FUNCTIONS OF SEVERAL COMPLEX VARIABLES* 
W. T. MARTIN, Syracuse University 

1. Definition of an analytic function. Consider a domain D in the 2n-dimen- 
sional euclidean space of n complex variables z1, , z,. A functionf(zi, , * z,.) 
is said to be analytic in D if in some neighborhood of every point (z1, * * z, z) 
of D it can be represented as the sum of an (absolutely) convergent multiple 
power-series 

al,...,j.(z- z)* (Z. -Xn 
i11 * * ** n=? 

An alternative definition is that f is analytic in D if it has derivatives of all 
orders, mixed and iterated, at every point of D. These two definitions are very 
easily seen to be equivalent. 

An important result due to Osgood J[1] in 1899 states that if f(zi, , z, ) 
is bounded in D and if the n partial derivatives Of/Ozi, j =1, * * n all exist at 
every point of D, then f is analytic in D. 

In 1899 and again in 1900 Osgood [1, 21 raised the question as to whether 
the boundedness restriction could be removed, and in 1906 Hartogs [1 ] showed 
that it actually could be removed. This means that if a function is analytic in 
each variable separately, it is analytic as a function of all n variables. This is a 
key result in the theory. 

* This paper is an amplification of an invited address delivered at the annual meeting of the 
Mathematical Association of American in Wellesley, Massachusetts, on August 12, 1944. 
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