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e Introduction to quantum computing
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- Linear solvers
- Nonlinear solvers
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Image: a model of the interior of a quantum computer at IBM (nytimes.com) 2/26


https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html
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e Inception of the idea in the early 80s:
Manin, Feynman

e Feynman, in “Simulating Physics with
Computers” ('81):

“...nature 1sn’t classical,
| dammsit, and if you want
Yury Manin Richard Feynman to make a stmulation of Nature,

you’d better make it quantum
mechanical, and by golly it’s a
wonderful problem...”

e Formalized notion of a quantum
computer, question about applications

beyond QM: Deutsch ('85)

e Applied algorithms: Shor’'s algorithm
for factoring integers ('94). . .

David Deutsch Peter Shor

Feynman (1982), Preskill (2021) 3/26



Elementary memory cells: classical bit vs. qubit
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o Memory cell = two-level system characterized by a state vector 1 or S, ~ 1 o ,1).

o A classical memory cell (bit) can be only in one of the pure states: |0) or |1).
A quantum cell (qubit) can be in any state « |0) + 8]1) with |a|? + |8]* = 1.
1 1

o Bits are flipped using X = (‘f (1)) Qubits: can use any unitaries, e.g. H = \% <1 _1).
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n cells, “bit string” 00...10

(.

( b1y =10...00)

boy =10...01)

2. b3y =10...10)

9 |bgy=10...11)
Z

by 1> =[1...10)
L Jon) =]1...11)

e A classical register with n cells allows one
to encode one integer a € [1, N|, N = 2"™:

’¢> = 0‘b1>—|—0‘b2>+...+1 ‘ba>—|—0’bN>

operations = shifts of the unit coefficient

e A quantum register with n cells allows one
to encode N = 2™ complex numbers ;:

N N
by = D klbey, D Jk? =1
k=1 k=1

operations = any unitary transformations
(single-qubit and multi-qubit gates)

e A quantum computer can perform parallel processing of exponentially many
complex numbers (e.g. field amplitudes on a grid).

5,/26
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o D-Wave Advantage: 5000+ qubits, but it does only quantum annealing.

e Atom’s chip: 1125 qubits. IBM's Condor chip: 1121 qubits. But IBM'’s latest
System Two uses Heron chips with only 133 qubits (5x smaller error rates).

o Typical are NISQ* computers: < 103 qubits, error rate ~ 1%.

*NISQ = noisy intermediate-scale quantum 6/26
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e In 2019, Google claimed “quantum
supremacy” on a 53-qubit machine:

circuit depth ~ 20

number of gates ~ 1.5k

fidelity ~ 0.2%

equiv classical simulation ~ 10% yrs

o But:

- later debunked: classical computers
can do the same within days and
with much higher accuracy;

- not a useful problem anyway.

e As of now, classical computers outperform quantum computers for all real-world
applications. We need more qubits, and we need qubits to be more reliable.

Arute et al. (2019), Pednault et al. (2019) 7/26
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e A set of physical qubits can operate as a fault-tolerant logical qubit:

TRIPLE OR NOTHING To detect an error, the ancilla qubits compare the states of the physical

; N . . qubits. They reveal which qubit has an error.
The information in a ( is encoded in three

Compares Compares
A and B B and C

_ - (1 X il No errors.

Two ancilla qubits N
o
will compare the states. L 1 ] Q — C has an error.

Match A has an error.

o 1 e B has an error.
match

e Record by Microsoft (April 2024):

107"

10°, - error rate reduced by 800x, to 10™°
§ 10 800x - 4 stable logical qubits made out of 30
5 104 ‘mPrOmee“t physical (ion-trap) qubits

1073

] ' e Let's assume we have enough
107° . .
Ayt Logica logical qubits. . .

Images taken from quantamagazine.com, blogs.microsoft.com; see also Bluvstein et al. (2023) 8/26


https://www.quantamagazine.org/how-quantum-computers-will-correct-their-errors-20211116/
https://blogs.microsoft.com/blog/2024/04/03/advancing-science-microsoft-and-quantinuum-demonstrate-the-most-reliable-logical-qubits-on-record-with-an-error-rate-800x-better-than-physical-qubits/

e Quantum computation = sequence of unitary operations on qubits. An immediate
bottleneck (one of many): hardware implementation of multi-controlled gates.

m . .
q3 |init) lout) 0/1
q2 D I I
‘0>meas 7 : : | /7(
Gl D 10 ne 7 1 Sotver [T AE
q0 \l/ X 0),,, #—{ Initialization -:- over -:- —

o Generic circuit: initialization — solver — amplitude estimation (AE) — measurement.

- Initialization: only certain states can be created efficiently — bottleneck.
- Solver: involves ancilla qubits for intermediate calculations and returns

‘OUt> - ‘O>aHCZ wzujc ’Sk>1n —|_ ‘;é O>anc |' : '>
k

- Measurement: run Ny, times, [¢029%2 = Nj. /Ny + O(Neui 7). With AE, a

measurement returns |1)2"%|* with probability close to one and error O(N,1).

9/26
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initial-value boundary-value
problems problems”
linear Opth = —i Hp A =b
nonlinear oru = g(u) F(u)=0

" These also include non-differential equations and optimization problems.
Not discussing eigenvalue problems here, but see, e.g. Parker & Joseph (2020).

10/26
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e Quantum computers are naturally fit for quantum Hamiltonian simulations. For
a Hermitian H, a quantum circuit can directly implement unitary U = exp(— th)

o = —iHy,  Y(t) = exp(—iHt)o

womes  ® Example: cold-plasma waves, ¢ ~ (g1v1, gov2, ..., E, B)T

layer
Wy =AW

O0s = € E/ms+13s x Qg

Antenna

. g ot OE =c¢V x B— AT Y esNosVs
B =—cV x E
I .L ( —a - Qq(x) 0 0 iwp1(x) 0 \
it 0 —a - Qa(x) 0 iwpa(T) 0
Low H= 0 0 & QC](w> pr(](w) 0
7NN e i —iwpr(x)  —iwpa(x) ... —iwpe(x) 0 ca -V
wall K 0 0 0 —ca-V 0 }
/7~ soL
LT o 00 0 0 0 i 0 —i 0
- linm =100 i |, ay=| 000, a=[i 00
0 2 0 — 0 0 0 0 0

Dodin and Startsev (2021); image taken from intechopen.com


https://www.intechopen.com/chapters/82137

...~ There are various ways to construct U = exp(—iHt).
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o Suzuki-Trotter expansion: (i) decompose H = 2. H;, where H; are rotation
gates; (i) divide ¢ into m » 1 intervals At = t/m, so [H; At, H; At] = O(m?).

U = [exp (—Zj H; At)] ~ [HJ exp(—iH; At) ]
implementable wﬁlementary gates
e Quantum Signal Processing (QSP)/Quantum Singular Value Transformation (QSVT):

- Allow to calculate polynomials of given matrices for many applications.

- Based on the idea of rotating unitaries. For example, by properly choosing r
angles ¢, one can construct an rth-order polynomial P,.(a) of a scalar a:

- (s ) (50

* *

R(¢o) U(a) R(¢2) ... R(¢,-1) U(a) R($,) = (Pr(a) )

~
r powers of U

S,

Suzuki (1990); Gilyén et al. (2018) 12/26



- ~ Block encoding and application to Hamiltonian simulations

e To obtain a polynomial of a matrix, encode A as a block of a unitary U 4, then rotate:

% ip A/llA

* 0k sparsity

R(¢0) Ua R(¢2) U} ... UyR(¢r-1) Ua R(¢y) = (PTiA) )

*

~
same ¢;. as for scalars; finding them for large ris a bottleneck

e QSP for Hamiltonian simulations: express e iH! through Chebyshev polynomials

A A

Ti(H) defined via Ty (cos ) = cos(k6); calculate Ty (H) using the appropriate ¢y.

e M = Jot)+2 > (-1)*PRO)Te(H)+2i Y, (-1)* V250 (H)
even k>0 odd k>0

Near-optimal dependence of the number of calls to H on time and error:

e =YY () +O((et/g)) = q=O(t+log(1/e))

S/

€

Childs et al. (2018); Low and Chuang (2019); Martyn et al. (2021); Dong et al. (2021) 13/26
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0.12
300

0.1

200

0.05
100

0.5} .

(I T W

Novikau et al. (2022)

(9<;¥)oly(log2 Nxz gt + 10g2(1/5)2 51 )

measurements

~
oracle QSP circuit

e X wave propagation in 1-D electron plasma; antenna
= oscillator. Efficient initialization and measurements.

]2 = nome2/2 + (E? + B?)/8n

(¢|window operator|i)) = energy

number of queries number of queries

500

tqsp = 20.0
150 - 4 400

300

100 |- A
200

50 - 100

|
10 15 20 25 30 35
log, (1/€gsp)

14/26
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e QHS are applicable to linear kinetic waves in homogeneous isotropic plasma. The
general linearized Vlasov—Maxwell dynamics is not always Hermitian (instabilities).

. E 0 cla-V) Rv E

E = : B sUsYs . ~ T
z'@t c(a-V)B + ZS,pR Vsg ioo| B = —cla V) 0 0 B
iyB = —c(a-V)E g Rv 0 h g
Z.81598 = ﬁsgs + R E - v, s chs P H=HT when R:ZC (f(’),)l/2 is real

e QHS w/non-Hermitian H: Linear Combination of Hamiltonian Simulations (LCHS)

e

log o |y ()|

| - :
—iHt _ * —iHut + ikH t) dk ~ )k Ak
7r/1+k2€Xp( LI + IR A Zk]( )k

0.0

—-5.0

—10.0

——  ref: exp(—A1)
—— LCHS: kmax = 10
—15.0 || = LCHS: kpax = 100
—— LCHS: kmax = 1000

0 10 20
1

Engel et al. (2019),; Dodin and Startsev (2021); An et al. (2023); Novikau (unpublished)

30

40

1

-~ 7

Y
unitary

However, truncation and discretization cause errors, so
one needs many terms in the sum.

e Also, in practice, linear-wave problems are usually
boundary-value, so let's consider those. . .

15/26



-~ Linear boundary-value problems using QSVT

e A typical RF problem: ¢; = —iw, so & is a spatial operator with w as a parameter.

~

AV x V x E—w?e(w)E = 4Amiwey = Ap=0b, 1 =A1b
—_———
antenna
e QHS-based: Harrow—Hassidim-Lloyd (HHL) algorithm and its later variations

- Exponential speedup for sparse and well-conditioned A, kK = Apax/Amin ~ 1.

- Pre-exponential factors can be prohibitively large: quantum advantage would
take N ~ 10%, 340 qubits, depth ~ 10%°72?, runtime 10%!2 yrs (2-D scattering).

e QSVT-based: polynomial approximation to A~!
- FEM matrices, N = NP: x = O(N?P) = O(N?)
O (k% In(N)In(k/e)) — O (NysIn(N,) In(NZ/e))

¢ ~ sparsity - best classical methods have O (§N£+2 111(1/6))' SO
quantum advantage is possible at D > 3

Harrow et al. (2009); Clader et al. (2013); Scherer et al. (2017); Novikau et al. (2023) 16/26
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e Linearized Vlasov—-Ampere system: 1-D electron

f T plasma, f(t,z,v) = F(z,v) + g(t,x,v), 0 = —iw:
. :0 —iwg + V0,9 — EO,F =0
S 80| ¢ S
........ —twk — f’vg dv = _jext
1200 20 40 60 80 100 126 ¢ SOlve A,(’b - b for w — <g7 E>T and b ~ <O7jeXt)T

| | |
—40 =20 0 20 40 —40 =20

Novikau et al. (2024)

01 0L
a0~ Re(g/Av) i l3-52 w0k / l2.4
//
wo = 1.2 / 2.64 1.8
1/ 1.76 1.2
20} /// . 20} .
/ 10.88 10.6
g o g
| OF — — 40.00 | Of 10.0
_—
8 /// 4—0.88 8 0.6
—207 // 1-1.76 —20T —1.2
/// o
7 _2.64 —1.
—40r //"’“. —40F
(b)| B§—3.52 (a)] 24
0 20 40 —4 —2 0 2 4 —4 2 4
“x v
17/26



Preconditioning
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o Since the QSVT scaling, O (k% In(N,)In(x/€)), involves strong dependence on
the condition number k ~ N2, preconditioning is likely necessary at large N,.

v =4 . -
v ‘ - A matrix P can serve as a preconditioner for A
l4r oanmC ¢ if PA has a condition number k(PA) « k(A).
12 A k(A ,"( =14 -
TN~ e K Aa A
—~ 107 I::"G~~~~ M f"e ------ o - Aw - b ~ PAw — Pb
N PasRe S 4"
= ‘-’ hd .0
S g 9 sen T
— ~ ’e' —
w(Ac) .- Y = (PA) 'Pb
6 ’,o" :
41 ,,—"@‘ -
e- . . _ .
| | | | ‘ - Since k(PA) « k(A), the matrix (PA)~ ! is
1 5 6 7 8 . _
o easier to calculate than A1

e For example, an approximation to Ag;l can serve as a preconditioner for our A.

FE
A= Aq+ Ag. AG:<€ g>—al, Asz((g}f %)wﬂ

18/26
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e No-cloning theorem: it is impossible to create a copy of an unknown quantum
state. So one can't, for example, calculate 2 like this:

) = 2 Ak ¥n 1)
o One can make 1)? out of two copies of 1) prepared independently (w/post-selection):
V102100 — 1) [9)10), + 250 Aigrtitor 1) 10) 1),
g () = 2056 Aigreti¥n i) 0)

e But then, at integrating, say, 0;¢; = ij Ak, 7 steps require 2™ copies of :

t

® ® t- At

() (2 @ @ t-2At

@ @ @ @ @ @ @ O t-3At
© 0 O O O O O O O O O O O O O O t-4At

Leyton and Osborne (2008) 19/26



~c0 — LiInear embedding

e Theorem (kind of): any nonlinear system can be made ezactly linear using a
sufficiently large phase-space extension.

e For example, Hamiltonian systems can be quantized.

- Example 1: single-particle motion in prescribed fields

de p dp 0V 0y (_h2V2

& m - aw o aT *VW

2m

- Example 2: three-wave interaction. Use A; — flz and A7 — AI Due to
n1 + no = const and ny + n3 = const, the accessible Fock space is finite-D.

Ay = gAsAs, Ay = —g" A A}, Ay = —g A, A}

0 gr/2(s—1) 0
h=| g+/2(s—1) 0 gV/2s
0 g Vv2s 0

Dodin and Startsev (2021); Engel et al. (2021); Shi et al. (2021) 20/26



~ Quantum simulations of three-wave interaction: an experiment
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A

e LLNL experiment on Aspen-4-2Q-A of Rigetti Computing, 2 qubits. U = e it
is converted to ~ 20 native gates. N is the number of times U is applied.

Shi et al. (2021) 21/26
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o Example: Carleman embedding (1932)

u = g(u) = g(uo)
——

ag

L 4(k)
9" (uo) k
+ kzl —k! U

— —
ag Yk

y1=a0+a1y1—|—a2y2+...

yg = 2uu

= 2u(ag + a1u + asu® + ...)

= 2a9Y1 + 2a1Yy2 + 2a2y3 + ...

fQ3 = 3aoy2 + 3a1y3 + 3asys + . ..

y=Ay+0,

y = (y1,y2,...)7

- Works only for stable dynamics. Figure: 1-D
driven Burgers' egn at small enough Re.

Liu et al. (2021); Engel et al. (2021); Andrade and Rauh (1981)

Torsten Carleman

Solutions at ¢ = T,,;/3

~ ~

0.1+ — —-Initial condition
————— Source shape A ,
\
—o—Direct \ /
02! ——Carleman, N =1 5 /
’ —+—Carleman, N =4 N )/
-0.5 0 0.5
X

22/26



.~ Koopman—von Neumann embedding: physics-based and stable
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e Instead of u, consider the probability distribution F'(¢,w) = d(w — u(t)):
uw=gu) = 0F + dylg(t,w)F]| =0

Y
Liouville equation

o tp = \/F satisfies idyp = Hep with H = H:
H = 1/2(gp+ pg), p = —idy

o Variational representation & (¢|id; — H|p) = 0
— structure-preserving truncations possible.

- A finite-dimensional representation is obtained by substituting a truncated
expansion [¢)) = Y. 1 |e;> in a suitable basis |e;) into the variational principle:

1 [ . ) .
W ... |=H[|...], Hjx = (ej|Hler) = Hy;
Py P

- Maybe dim ) does not have to be very large if one chooses the right basis?..

Joseph (2020); Dodin and Startsev (2021); Lin et al. (2022) 23/26



-~ Koopman—von Neumann embedding for the Vlasov—Poisson system
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oo
[OLiE=

2Zm L}
P L

RIN
AL
ABC

e Vlasov equation does not feature individual particles, but one can emulate Vlasov
dynamics using N macroparticles. The N-particle distribution equation is linear:

= HU

- = Vi — +
ot “ox; Ox; Py ox; ) Op;

ov Y ow N<avext+ i amj>a\11

1=1 1=1

Here, Vext is the external potential and V;; = V(|x; — x,|) is the interaction
(Coulomb) potential, which is a fixed known function.

e No need to simulate macroparticles as highly localized objects. Use expansion in
global modes (e.g. Gauss—Hermite) — finite-D conservative linear system:

1 [t . ) .
we ... =H{...], H;i. = {e;|Hl|ex) = Hy;,
Py Y

e Can this provide quantum advantage in practice? This remains to be seen.

work in progress; see also Lloyd et al. (2020) 24/26
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FETL Summary (and the obligatory comic strip)

PLASMA PHYSICS
LABORATORY

HOW'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING

ALONG?

THE PROJECT EXISTS
IN A STMULTANEOUS

Uirivaral Lok

CAN I THAT'S

STATE OF BEING BOTH || OBSERVE A TRICKY
TOTALLY SUCCESSFUL
AND NOT EVEN
STARTED.

IT? QUESTION.

GREAT!

Dilbert.com DilbertCartoonist@gmail.com

4.17-12 ©2012 Scont Adams, Inc. Tt

The hype aside, quantum computing remains a legitimate physics problem.

Possibly promising directions of research for plasma applications:

- algorithms: physics-based linear embeddings, hybrid computing;
- circuit engineering: automation of circuit development (ML/AI);
- hardware: specialized gates for classical problems, e.g. multi-controlled gates.

Little is done in the area of practical algorithms — may be a land of opportunity.

Will it ever work? We'll never know unless we try hard, and we have not yet.

26,26
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