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The classic quasilinear theory (QLT) of resonant wave-particle interactions [1] fails to
conserve the action of nonresonant waves and mostly misses (oversimplifies) the adiabatic
ponderomotive effects caused by the slow evolution of the wave parameters in time and
space. Postulating action conservation instead of the usual amplitude equation for the
waves' electric-field amplitudes undermines QLT's exact energy-momentum conservation,
which is a significant part of the classic QLT's appeal. The ‘oscillation-center’ QLT
[2] reinstates both action and energy-momentum conservation ad hoc, but a general
first-principle QLT has been lacking. Here, we report a rigorous formulation of QLT
based on the Weyl symbol calculus [3, 4]. This formulation captures both adiabatic and
nonadiabatic dynamics and leads to an exactly conservative model for any Hamiltonian
wave-plasma interactions. Effects of plasma inhomogeneity and Balescu—Lenard collisions
are also accommodated. The known results for electrostatic, relativistic electromagnetic,
and gravitational interactions are reproduced as special cases.

[1] T. H. Stix, Waves in Plasmas (Springer, 1992), 2nd edition.
[2] R. L. Dewar, Oscillation center quasilinear theory, Phys. Fluids 16, 1102 (1973).

[3] I. Y. Dodin, Quasilinear theory: the lost ponderomotive effects and why they matter,
Rev. Mod. Plasma Phys. 8, 35 (2024).

[4] 1. Y. Dodin, Quasilinear theory for inhomogeneous plasma, J. Plasma Phys. 88,
905880407 (2022), arxiv:2201.08562.
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e What's wrong with the textbook theory?

Fails to conserve the wave action, misses inhomogeneities and collisions.

e How do we fix this?

Use the Weyl calculus and keep the derivation general.

o Examples: grand unification

Electrostatic turbulence, electromagnetic turbulence, relativistic gravity...
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o5 Quasilinear theory: the textbook version

e Homogeneous 1-D Langmuir turbulence, E = P Ekeikx

PLASIAS Of +v0uf +(efm)Eduf =0, f=Ff+f f«f

Thomas Howard Stix
S — =T

e Assume a linear solution for f but keep d;f nonlinear:

fr = _Hm) 5 57 '’ af )
L | k WE — kv 507 m 5’0

e Then, the average distribution satisfies a diffusion equation:

of @ Of (¢, v) e [ dk o |Ep(t))?
ot ov (D(t,v) v )’ b= mQ/LZWLi (kv — wi ()]

f f
(a) \/\ (b) /
[%

Vedenov et al. (1961); Drummond and Pines (1962) 4/21




.~ The textbook quasilinear theory is conservative only by accident.

This model is praised for its exact conservation of momentum and energy with

d|Ey|? < Amre? / Oy f (£, )
= 2 E 1 — d =0
dt \-Zf—/’ o mk? J| v’v—wk(t)/k

1m wy,
But this field equation violates the action conservation (except in the cold limit):

dZ ~ o0
d—tk = 29 Lk, T = |E)?

w(wQEH)
167w?

(wkzak)

QL theory is conservative only by accident: the error in the equation
for E}. is compensated by another error in the equation for f:

_i(Y/m)Ey Of »
v wr — kv o0v i Q_@f_‘ﬂ
non-negligible

=

The ponderomotive forces, caused by (’)(ét, 5;,;), are also missing. Coincidence?..

5/21



®UPPPL ‘Kind-of-known’ approach: oscillation-center (OC) QL theory

PRINCETON
PLASMA PHYSICS

LABORATORY

o With O(0;, 0,) retained, the only known approach is heuristic: PO Ve
- ignore O(0d;, 0;) near resonances (separated out arbitrarily) L

- OC coordinate transformation for non-resonant particles

- assume the proper equation for the wave action

9Fy 0(K) 0Fy (K) oF, _ 0 -(D--‘?f?-)

ot dgp dx 9x dp dp op
ongt dwit Onyt dwit Ony! de, k2 I o’ |2
’ — ' == Dare Ly o l=
o Tk oz oz ok M ES ot BalP

A2 k2 | @it |2 @ 1 (we!—k-p/m)
D=4rxe? L%/ 8w LS l—k. =y —
;% (I P |/ wLO) kK276 (wi'—k p/m): (K) H, i~ m 8wl5 Jwyl wkl._k.p/m

e Oscillation-center QL theory is not actually proven, not expressed in terms of
measurable quantities, not extendable to off-shell waves and collisional plasmas.

Dewar (1973),; McDonald et al. (1985) Image: adapted from xkcd.com


https://xkcd.com/2194/

éj NNNNNNNNN _ A first-principle approach
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o Usedif = {FJrfI, £} split f = f+ f and linearize the equation for fluctuations f:
of —{H,f} ={H, T}, of—{H[}={H [}

e Define phase-space velocities in general canonical coordinates z, with J = (_01 é):
v (t,z) = I OsH(tZ)  ut(t,z) = J ggﬁ(t, z)

' '

O(1) O(e)

e In terms of the Green's operator G and unperturbed microscopic fluctuations g:

f — 97 @aaaaf’ u® = u® (t7 2)7 é = lim, o4 fOOO dr G_VT_T(at'H’aaa)

o Define DY = 72G4if and 3¢ = u®g/f. Then,

0uf = {H, [} = 2a(D*P05f — 3°F)

It remains to approximate D8 To do this, let's
introduce some machinery...

Dodin (2022) 7/21



%3* !Eml IDNL Weyl symbol: a phase-space representation of an operator
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o Any operator 2¢(x) = [ A(x,x) ¥(x') dX' on space/spacetime’ =l
x can be expressed through its symbol using X = x, k = —iV: S ey
ks E < k
A(x, k) = [ A(x +5/2,x —5/2) e""*ds R
Al < A
A = hon [ A, K) e R0 KA) 4 di d” K AB < A«B

o Example 1: The dielectric tensor €(t, x,w, k) is actually
the Weyl symbol of €

e Example 2: Spectrum of the 2-point correlation function
of E is the symbol of |E,){E}|, a.k.a. Wigner matrix:

Wa(t, ,w, k) = (21) 4 [ dr dseiwmiks
X (Balt + /2,2 + 5/2) Bj(t — /2, — 9/2))

" (%,k) = (t, @, —idp, —iV) 8/21
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.~ To approximate an operator, approximate its symbol: A Ax Aappr — Aappr

STRUGGLE NO MORE!
T™ HERE TO SOLVE
IT JITH ALGORITHIS!

e For operators acting on slow functions:

A(X,k)ZA(X,O)+k-V0+..., V():@kA(x,O)

S

AT = |A(x,0) —iVp -V —i2(V - V) + ... |®

e For operators acting on quasimonochromatic functions:

FaS

A = i) [A(x, k) =iV -V —i2(V-V)+...|¥

k=V0(x), V =dAx k(x))

Ray Tracing
and Beyond
e o Applications to linear waves = modern geometrical optics.

But we can also use this in quasilinear theory...

Tracy et al. (2014); McDonald (1988); Dodin et al. (2019). . . Images: xkcd.com


https://xkcd.com/1831/

.. — A first-principle approach: avoid solving for f explicitly

WJATCH QLOSELY- ° f lives in a 7D space (t,x,p) = X — 14D phase space (X, K).

e One can show that the symbol of D can be expressed as

& D(X,K)= [dK' Wu(X,K’z G(X,K - K')

Wigner matrix of u

D(X,K)~ D(X,0)+ (K - 0x)D(X,0)
usual QLT new term

o The Wigner matrix of the quiver phase-space velocity u is the symbol of |u){(u|.

o Using |uy = iJq \H> where g = —i0,, one can express W ., through the scalar
Wigner function of H, which is the symbol of |H)(H]|:

— dr d
thf = / 2;_- (27.‘_8) esz 1k-s H(t + 7-/2 €T + 3/2,]7) (t — 7‘/2 €Tr — S/ij)

Image: adapted from xkcd.com Dodin (2022),; Dodin (2024)


https://xkcd.com/1081/

...~ Equation for the dressed, or “oscillation-center”, distribution F

o Equation for the “oscillation-center” distribution F' = f + 0, - (© 0, f) captures
both QL diffusion and ponderomotive forces:

oF — 0 oF AT THIS POINT, YOU'RE PROBABLY
e {H+®,F} + P (D a—> THINKING, “I LOVE. THIS EQUATION
p p PND LISH IT JOULD NEVER END"
0 kk'W WELL, GOOD NEWS!
®=—+4+dwdk
619][ O kvt o)

¥=0

e
-

: KW
cp_%.][dwdk%w_k_v)

D= w/dk kk!W = (t, 2, k - v, k; p)

yagt (3

No coordinate transformations — no singularities!

e When averaging over phase-space volume Ax Ak = 1, the function Wﬁ IS
nonnegative — D is positive-semidefinite — H-theorem.

Dodin (2022); Dodin (2024) Image: adapted from xkcd.com


https://xkcd.com/2605/

.~ Let’s make the fields self-consistent (but not necessarily on-shell).

e Use a generic linear-wave action for vacuum and a generic particle Hamiltonian.
Then W satisfies a linear equation with initial conditions g5 as sources.

1 [ ~in ~ SR RPN N P g ~
:5/\IITEO\IJdtd:1:, H,~ Hy, + &\ ¥ + - (L, 0) (R, ¥) — E@:Z/dpasgs

2
= = os(w, kyp)al(w kip) ,  OF(p)
E(w, k) ~ Zo(w, k) Z/dp (LIR)n(w, k;p)F (p)+;][dp oot 0 k - g
: .o ~ (macro) ~ (micro)
e The general solution is ¥ = W + W '
é\f:[vl(macro) _ O’ ~(m|cr0) B Z fdp H_laasgs

o The corresponding Wigner tensors are U and S/(2m)"":

(macro)

(t —T7/2,x — 8/2)>eiw7'—@'k;.s

dr ds ~ (macro)
U(w, k) = /% o) (P (t+7/2,2+ s/2) ¥

S(w,k) = 21, [ dp'bw ~ ke o) Fulp)E ! (@, B) (el ), ki p)E (w1 )
Fluctuation-dissipation theorem: S¢q = —2T/w (E ')A
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6 JPPPL Equation for the OC distribution with self-consistent fields
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e In a self-consistent field, a collision operator emerges:

oF, 5 oF,
— {HsaF} ( s )+Cs

ot op op

e C, has a Balescu—Lenard form, satisfies H-theorem,
conserves particles and energy—momentum.

C, = @pz

dk (k-ve—k-v.)|al(k v, k;p)E  (w, k)ay(k-v,, k;p)|?

x kk - (az;z() )st(p’) — Fy(p) aF@; )>

YOU SHOULD PROBABLY o K —x theorem” for the ponderomotive energy A, = H,— Hys:

JUST GET OUT OF HERE.

10

% A = >3, Eh: Udwdk
10 (alUa) 1
;:: ;% 2% ][kw—k-vdedk+2/U (LLRs)ndwdk

“e.g. in Kaufman (1987) Photos: Radu Balescu and Andrew Lenard. Image: xkcd.com



http://theor.jinr.ru/~kuzemsky/balescbio.html
https://www.heraldtimesonline.com/obituaries/story-obituaries-2020-03-22-andrew-lenard-92-43829163
https://xkcd.com/2487/

Special case: on-shell waves and the associated conservation laws
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/ o Wave kinetic equation (WKE) for a complexified wave field:”

[

TH=100 — E[PN(T|]=0 — tr[dwE+U.=0

k

o On-shell waves have U, ~ §(A) J (¢, z, k) nn'. —
: : , [dp H,F, | OC energy density
In terms of the action density J, the WKE is .
[dppFs | OC momentum density
00T + Vg - O — O - O] = 29 [dkwJ | wave energy density
" * [ dkkJ | wave momentum density

conserves the sign of J

o Combined together, the equations for Fs and J conserve the energy—momentum:
0H
t

0 _ 0 — i ) _
0 0 i i i 0t
= Z dppiFs + [ dkkid | + = Z dp (prvg + Ao Fs + | dkkogJ | = —g dp =7 b

e F and J are fundamental objects, the oscillating fields per se are not needed.

sFS

“cf. McDonald and Kaufman (1985) 14/21



.~ S0 how does one apply all this?

e Need to represent the vacuum-field action and the particle Hamiltonians in the form
1 ~ S ~ ~ ~ 1 S ~ N ~
So = 5 /\IJTEO\I’ dt d, H, ~ Hys + aS\IJ + 5 (LS\IJ)T(RS‘II)

e Non-relativistic electrostatic interactions: Dewar’'s theory, Balescu—Lenard
theory, and the formulas for electrostatic fluctuations are subsumed (see paper).

~\2 1 Rve 2
S():/(VSO) dtdw:—/@’( v)@dtdm, H, = i + esp + esp

St 2 41 2m

Zo(w, k) = ¥*/an, as(w, k) = e, Ls(w, k) = Rs(w, k) =0

o The ‘dressing’ F — f = 0p - (® 0, f) carries energy—momentum:

;/deOSFS+/dka=;/deOJS+8iﬁﬁ
Z/dpstJr/dkkJ:Z/dppfs
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Relativistic electromagnetic interactions

o Let's adopt E = i A/c as the interaction field (Weyl gauge) and B = (ck/&) x E:
E? - B? 1 [~ 1 2 oy o] s

SOZ/ dtdm:—/ET— 1+ = (k&' — 1%%) | E dtdz,

2 A7 w2

8T

=g
o Relativistic-particle Hamiltonian can be Taylor-expanded and expressed through E:

Hs = \/m§c4 + (pc— es A — e, A)? + e, + e,p

ie ~ l/7e2\/1—-v0l/?21 ~

:H08+7868E+—(7‘9E)( Vs ;E)
w 2\ w MsVs w
\_\/_/ \_\/_/ " ~ W
6 L.E R E

(6 ]

“(p) = fo(p+ e, Afe):

o Energy—momentum conservation, with fs(

S
16,21



.~ Relativistic electromagnetic interactions

o Relativistic nonlinear potentials (U is the average Wigner tensor of E)

viU(k - v, kv,
(k- vg)?

kk (viUwv,)
ww—k-vs+9|,_,

e? 0 E (vilv,) €2 tr(Up; 1)
Ay =-=— F dwdk s ° =2 [ dwdk >
2 Op ][w w2w—k-v3+2/w w2

D, = me /dkkk

%
O, esﬁfdwdk

o Fluctuation spectrum and collision operator® (€ is the dielectric tensor):

S(e ) = 2r (42%)2 [ bt~ kv ) Fup)e ! (@ k) vl e w. )

dk / |’UT (k " Vs, k)’U;,|2 /
o= i 023 [ W 0w k)
0Fs(p) , OF4(p')
¢ F/ _FS
<k (P B ) - Fp)

“cf. Hizanidis et al. (1983); Silin (1961) 17/21
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e The same formalism can be readily applied to particle
interactions with gravitational waves.

H(X, p) = m* + ga6<x)papﬁa Jap = gaﬁ + gozﬁ

(tot)
9ap =Y9ap*+ haﬁ

e The QL coefficients are explicitly found in terms of
¢ = pap5p7p5Uo‘575. QL diffusion is gauge-invariant.

-
D= 1po dk kk€ (K p,)
T 1
o L7 [y ke
A 82 4 PO o9 IPO — kPp,| g
PaPgs o ~fB 1 0 7[ k&
A = dk U7 — —— 4 dk
2 PO / K 8PO0p, kPp,
015 o ©® Vacuum GWs:" effective ‘ponderomotive’ metric

e M =m? g paps, 9ok = 9% + [dkUeh.

Garg and Dodin (2020) *Lorenz gauge assumed, Vaﬁaﬁ =0



...~ Local quasilinear theory for magnetized plasma

o The canonical W7 cannot be expanded in L~ because A, unlike B, depends on
a strongly. In non-canonical variables, the derivation is too cumbersome.

e Option 1: find global angle—action coordinates (¢,J), Fourier-expand in ¢, treat
each f,, as a separate f. Since f,, are ¢-independent, there is no problem left.

F =3 Fu@)eim

e Option 2: find local canonical coordinates in which the theory works.

- Homogeneous field: (Q3, P3) = (0, 1), (Q2, P2) = (2,p.), (Q1,P1) = (x y)
- Inhomogeneous field: similar coordinates with P1 L Q1 = Vg and P2 & QQ

- Fourier-expand in 6 but retain weak dependence on the local ()1 and Q)s:

NZ Zﬁ(@l) Q27P17P2;:u)eiw

1€ k b x k 1P, Sy
H = —reZ (— Ji(kip) ki QpJ;(kip) o Ly (lﬂp)b) . Ee'?

- Reproduced the dielectric tensor and Kennel & Engelmann’s (1966) QL diffusion,
generalized the known ponderomotive forces (Grebogi et al., 1979). . .~

*in preparation 19/21



e Summary
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e Quasilinear theory is corrected and derived from first principles as a local theory.

- general Hamiltonian, any interaction field;

- inhomogeneity, collisions and off-shell waves;

- H-theorem for inhomogeneous plasma;

- generalized conservative Balescu—Lenard collision operator;

- conservation of the action, energy, and momentum for on-shell fields;

- many known results are subsumed as special cases.

o Take-home message #1: O(0;,0,) is non-negligible on ¢ » w™! and ¢ » k1.
Weyl calculus is the way to calculate these corrections.

7o i(efm) By OF
& wr — kv ov

L _ 5 oF N
LO00F.0,  F-T-= (@ é) _ O(B?)

e Take-home message #2: When deriving a reduced theory, transform the
distribution, not the coordinates.
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