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Seminar Room 2, Kinesis Level 6
10am, Thursday, August 7Introduction

‚ Modeling RF waves is fusion is important, amounts to solving linear Maxwell’s eqs:

∇ ˆ ∇ ˆE ´ pω2
{c2qpϵ̂Eq “ source

‚ ‘Full-wave’ approach: solve as a boundary-value problem on a
grid, Aabψb “ Sa. Expensive, mostly used for the IC range.

‚ ‘Ray tracing’ (beam tracing, quasioptics...) for EC & LH waves:

- For E “ eiθΨ with large k
.
“ ∇θ, or small λ

.
“ 2π{|k|:

k ˆ k ˆE ` pω2
{c2q ϵHpω,k;xqE “ 0

loooooooooooooooooooooooomoooooooooooooooooooooooon

DE “ 0, D
.
“ detD

dxa

dt
“ ´

BD{Bka
BD{Bω

,
dka
dt

“
BD{Bxa

BD{Bω

- Initial-value problem: calculate the amplitude on the rays,

9W “ ´p∇ ¨ vg ` 2γqW, Pabs “ 2γW

Images: Bonoli et al. (2007); Poli et al. (2017) 2/22



Seminar Room 2, Kinesis Level 6
10am, Thursday, August 7A more general formulation of geometrical optics is long overdue.

x

|E 2 ‚ Geometrical-optics ordering breaks down near
reflection points, where λ{L Ñ 8. Applications:

- Dense plasmas could use EBW heating Ñ need
O–X conversion near ωp “ ω.

- Parametric instabilities with trapped modes.

x

k⟂

k||
2< k2

x

k⟂

k||
2= k2

x

k⟂

k||
2> k2

Need a different formulation of GO, with a different small parameter.

(How are we even ok with modeling reflection with tracing without it?!)

Preinhaelter and Kopecky (1973); Hansen et al. (1985); Hansen et al. (2019); Gusakov and Popov (2020); Clod et al. (2024) 3/22



Seminar Room 2, Kinesis Level 6
10am, Thursday, August 7Let’s introduce some machinery...

‚ Approximating D̂E “ 0 means approximating D̂.

‚ Any operator D̂Epxq “
´
dpx,x1qEpx1qdx1 on space x can

be expressed through its Weyl symbol using x̂ “ x, k̂ “ ´i∇:

Dpx,kq “
´
dpx` s{2,x´ s{2q e´ik¨s ds

D̂ “ 1
p2πq2n

´
Dpx1,k1

q eik
2
¨px1

´x̂q´ix2
¨pk1

´k̂q dx1 dk1 dx2 dk2

1̂ ô 1

x̂ ô x

k̂ ô k

Â:
ô A:

ÂB̂ ô A ‹ B

‚ Example 1: The dielectric tensor ϵpt,x, ω,kq is actually
the Weyl symbol of ϵ̂, at least up to Op1{ωτ, 1{kLq.

‚ Example 2: Spectrum of the 2-point correlation function
of E is the symbol of |Eay xEb|, a.k.a. Wigner matrix:

W abpt,x, ω,kq “ p2πq´4
´
dτ ds eiωτ´ik¨s

ˆ xEapt` τ{2,x` s{2qE˚
bpt´ τ{2,x´ s{2qy

Tracy et al. (2014) 4/22



Seminar Room 2, Kinesis Level 6
10am, Thursday, August 7Traditional geometrical optics in terms of Weyl symbols

‚ Consider an eikonal fields E “ eiθpxqΨpxq with
θ treated as a prescribed field. Invariant form:

D̂ |Ey “ 0, |Ey “ eiθpx̂q
|Ψy , k

.
“ ∇θpxq

‚ Then the envelope |Ψy is governed by

D̂ |Ψy “ 0, D̂ .
“ e´iθpx̂qD̂ eiθpx̂q

‚ The symbol of the envelope operator D̂ is approximately the shifted symbol of D̂:

Dpx,kq « Dpx,k ` kpxqq “ Dpx,kpxqq ` kµV
µ

pxq ` 1{2 kµkνΘ
µν

pxq ` . . .

V µ
pxq

.
“ pBD{Bkµqpx, k̄pxqq, Θµν

pxq
.
“ pB

2D{BkµBkνqpx, k̄pxqq

‚ Weyl expansion: approximate symbol Ñ approximate operator Ñ x representation

0 “ D̂Ψ “ Dpx, k̄qΨ
looooomooooon

dispersion

´i
`

V µ
Bµ ` 1{2 BµV

µ
˘

Ψ
loooooooooooooomoooooooooooooon

GO propagation

´1{2 Bµ
`

Θµν
BνΨ

˘

loooooooooomoooooooooon

diffraction

` . . .

McDonald (1988); Dodin et al. (2019); used in PARADE: Yanagihara et al. (2019)a; Yanagihara et al. (2019)b . . . 5/22
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10am, Thursday, August 7The basic idea of metaplectic geometrical optics (MGO)

‚ One can adopt various representations for the kets and the equation Ĥ |ψy “ 0:

- Spatial: use the eigenbasis of the position operator, x̂ |ex̂pxqy “ x |ex̂pxqy:

ψx̂pxq “ xex̂pxq|ψy , 0 “ xex̂pxq|Ĥ|ψy ” pĤψx̂qpxq

- One can also use the eigenbasis of a different operator, q̂ |eq̂pqqy “ q |eq̂pqqy:

ψq̂pqq “ xeq̂pqq|ψy , 0 “ xeq̂pqq|Ĥ|ψy “ pĤψq̂qpqq

- Instead of rx̂, k̂s “ i, the momentum operator is then defined via rq̂, p̂s “ i.

‚ The linear transform that connects ψq̂ and ψx̂ is called a metaplectic transform:

ψq̂pqq “
´

xeq̂pqq|ex̂pxqyψx̂pxqdx ” pM̂ψx̂qpqq

6/22
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10am, Thursday, August 7The two approaches to MGO

x

k
NIMT

GO

‚ Earlier, we did GO on tangent surfaces and used near-identity
metaplectic transforms (NIMT) to connect those surfaces:˚

ˆ

q̂
p̂

˙

“

ˆ

A B
C D

˙ ˆ

x̂

k̂

˙

‚ Good: linear transformations conserve Weyl symbols.

A1
pq, pq “ Apxpq, pq, kpq, pqq

‚ Bad: NIMT are hard to compute accurately, and also this
formulation does not yield a self-contained PDE.

‚ Now, we want to develop MGO via continuous nonlinear transformations. Goal:
symplectically invariant version of PARADE: (diffraction, mode conversion).

˚Ph.D. thesis by Lopez (2022); also Littlejohn (1985) : Yanagihara et al. (2019)b; Yanagihara et al. (2021) . . .
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10am, Thursday, August 7Deriving the field equations in the new representation is easy, but...

‚ Narrow beam: one reference ray + diffraction. Having
no crossing rays means having no caustic issues.

D̂ |Ey “ 0, |Ey “ eiθpq̂q
|Ψy , p

.
“ ∇qθ

‚ Derive the equation for Ψq̂ as usual:

DHΨq̂ ´ i
`

V µ
Bµ ` 1{2 BµV

µ
´DA

˘

Ψq̂ ´ 1{2∇K,σ

`

Θσσ1

∇K,σ1Ψq̂

˘

“ 0

‚ The actually challenging questions are as follows:

- What is the small parameter that replaces λ{L?

- What is the symbol of D̂ in the new representation?
(The zeroth-order approximation is not enough!)

- How does one map Ψq̂ to the physical space?

‚ Need to develop a systematic theory of MT for nonlinear variable transformations.

Image credit: istockphoto.com 8/22
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10am, Thursday, August 7Metaplectic transform for nonlinear canonical transformations

‚ For nonlinear transformations, the existing theory focuses on exactly solvable
problems – not useful. Need to develop an asymptotic theory from scratch.

‚ MT is given by a unitary integral operator that connects two representations:

ψq̂pqq “

ˆ
dxMpq, xqψx̂pxq, Mpq, xq “ M̄ ˚

px, qq “ xeq̂pqq|ex̂pxqy

‚ The equations for the kernel of MT, an ‘M -wave’, are Schrödinger equations:

x̂ “ Xpq̂, p̂q, k̂ “ Kpq̂, p̂q

ñ

Xpq,´iBqqMpq, xq “ xMpq, xq

Kpq,´iBqqMpq, xq “ iBxMpq, xq

q̂ “ Qpx̂, k̂q, p̂ “ P px̂, k̂q

ñ

Qpx,´iBxqM̄px, qq “ qM̄px, qq

P px,´iBxqM̄px, qq “ iBqM̄px, qq

‚ Symbols are mapped from px, kq ” z to pq, pq ” y by the Wigner function of M :

Aypyq “

ˆ
dzµpy, zqAzpzq

Littlejohn (1986); Mello and Moshinsky (1975) 9/22
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10am, Thursday, August 7Examples of metaplectic transforms

‚ Phase-space shift: q̂ “ x̂` ∆q, p̂ “ k̂ ` ∆p

Mpq, pq “ ei∆pq δpq ´ x´ ∆qq, ψq̂pqq “ ei∆pqψx̂pq ´ ∆qq

‚ Symplectic rescaling: q̂ “ x̂{α, p̂ “ αk̂, with α “ const

Mpq, xq “ |α|
´1{2 δpq ´ x{αq, ψq̂pqq “ |α|

1{2ψx̂pαqq

‚ Linear symplectic transformation: note that M̂œ “ ´1

ˆ

q̂
p̂

˙

“

ˆ

A B
C D

˙ ˆ

x̂

k̂

˙

, Mpq, xq “
e
ipDq2´2xq`Ax2q

2B
?

´2πiB

‚ Eikonal transform: q̂ “ x̂, p̂ “ k̂ ´ θ1px̂q

Mpq, pq “ e´iθpqq δpq ´ xq, ψq̂pqq “ e´iθpxqψx̂pxq

Standard GO, ψpxq “ Ψpxqeiθpxq, is just the eikonal metaplectic transform!

10/22
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10am, Thursday, August 7Geometrical optics of M -waves

‚ As mentioned earlier, the equations for M -waves are Schrödinger equations:

Kpq,´iBqqMpq, xq “ iBxMpq, xq, P px,´iBxqM̄px, qq “ iBqM̄px, qq

‚ Let us assume an eikonal form, M̄px, qq “ eiF px,qq Mpx, qq. One finds that F is
the type-1 generating function of the canonical transformation px, kq ÞÑ pq, pq:

k “ BxF px, qq, p “ ´BqF px, qq

‚ Functions Kpq, pq and P px, kq serve as ray Hamiltonians, which are conserved, and
Kp and Pk serve as group velocities. For example,

0 “ dtK “ Bxkpx, qq `KpBqkpx, qq ñ Kp “ ´B
2
xxF {B

2
xqF.

‚ GO amplitude equation BxM
2 ` BqpKpM

2q “ 0 yields M2 “ |B2
xqF | ˆ const, so

M̄ « eiF
b

B2
xqF {2π

i.e. there are ways to approximate M .˚ But how do we find the new coordinates?

˚One can also do better than the zeroth-order approximation, see below. Miller (1974)
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10am, Thursday, August 7So how do we find the desired coordinates?

‚ For a wave governed by Ĥ |ψy “ 0, the ray trajectory is Hzpzq “ 0. The new
momentum should be ĥ “ Ĥ, and the position operator τ̂ should satisfy rτ̂ , ĥs “ i.

‚ We need them in an explicit and simple enough form, so we could solve for M .
We can give up the exact equality ĥ “ Ĥ to keep the equation for M manageable.

‚ Let’s try z ÞÑ y ÞÑ ζ, where z ÞÑ y is linear and y ÞÑ ζ is an asymptotic near-identity.

y= (q,p)

0=Hz(z)=Hy(y)

sp
sq

ζ= (τ,h)

h=0

sq “ v{v, sp “ u{u

1 “ sq ^ sp ” s⊺qJsp

J
.
“

ˆ

0 1
´1 0

˙

‚ Tricky part: phase space has no metric, so there are no angles, perpendiculars, etc.
ñ can’t define sq and sp as orthonormal. Symplecticity requires only vu “ v ^ u.

Tingjing Xing’s project. See also Kamran et al. (2009) 12/22
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10am, Thursday, August 7Linear shift, rotation, and rescaling

‚ Near any given z0 on a ray, where Hzpz0q “ 0, the symbol of Ĥ is

Hzpzq « ´pz ´ z0q ¨ J9z0 ` 1{2 pz ´ z0q ¨ gpz ´ z0q, g
.
“ pB

2
zHq0

‚ Assuming the basis sq “ 9z0{v and sp “ ´v:z0{ε such that

ε “ p:z ^ 9zq0, v “ pε2{|g|q
1{4, g

.
“ det g,

the ray is a harmonic oscillator with orbit radius R “ v{Ω and frequency Ω:

Hypyq “
Ω

2

`

q2 ` pp`Rq
2

´R2
˘

, Ω “
a

|g| sgn ε

‚ Then, ψq̂ locally satisfies the equation of a quantum harmonic oscillator (QHO).

q

p

0

g > 0, ε > 0

q

p

0

g < 0, ε > 0
q

p

0 g > 0, ε < 0
q

p

0 g < 0, ε < 0

This is basically a fancified Williamson diagonalization, see Nicacio (2021) 13/22
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10am, Thursday, August 7Result #1: The small parameter of MGO

‚ QHO is well described by GO when its number of quanta, n “ R2{2, is large.
Thus, the natural small parameter is the symplectic curvature κ

.
“ R´1.

(a)
(b)

‚ Tricky part: the coordinate transformation is singular and κ9 |g|3{4{|ε|1{2 is
formally infinite near inflection points, where ε Ñ 0:

ε ” p:z ^ 9zq0 “ ´
d2x

dk2

ˆ

BHz

Bx

˙3

“ ´
d2k

dx2

ˆ

BHz

Bk

˙3

‚ More generally, the symplectic scale is as R “
?
∆x∆k, so κ “ p∆x∆kq´1{2.

14/22
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p(q)

‚ Expand the wave Hamiltonian in p near the ray trajectory
ppqq as Hpq, pq “ V pqqpp´ ppqqq. Then,

τ̂ “ τpq̂q, ĥ “ 1{2 pV̂ p̂` p̂V̂ q ´ V̂ ppq̂q, rτ̂ , ĥs “ i

‚ One can find M explicitly and, with some algebra, show that

µ « AiεpHzpzq ´ hq δpτpzq ´ τq

AiεpXq “
2

|ε|1{3
Ai

ˆ

2X

|ε|1{3
sgn ε

˙

ε “ pJBzHzq ¨ pB
2
zHzqpJBzHzq

-15 -10 -5 5

-0.4

-0.2

0.2

0.4

‚ The symbols in the two representations are connected by the Airy transform.˚ For
smooth symbols, such as D, there are no corrections of order p∆x∆kq´1.

Azpzq «
´
Aiεph̃´HzpzqqAζpτpzq, h̃qdh̃, Dzpzq « Dζpζpzqq

˚ Widder (1979) 15/22
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10am, Thursday, August 7Result #3: Wigner function W “ symb p|ψy xψ|q

‚ Everything interesting can be expressed through Wigner functions, so one might
not even need a field. As symbols, Wigner functions are easy to remap!

‚ In the ray-aligned coordinates, waves are stationary (w/o dissipation, diffraction)

Ĥ |ψy “ 0 ñ Wζpτ, hq “ W0δphq

‚ In px, kq, MGO waved always have Airy-type Wigner functions with scale ε:

Wzpx, kq “

ˆ
dτ dhWζpτ, hqµpx, k, τ, hq “ W0AiεpHpx, kqq.

‚ These complicated profiles are caused by unfortunate coordinates, not by physics.

1 2 3 4 5 6
x

-0.2

-0.1

0.1

0.2

W (x)

n= 10

ε “ pJBzHzq ¨ pB
2
zHzqpJBzHzq 16/22



Seminar Room 2, Kinesis Level 6
10am, Thursday, August 7|ψx̂pxq|2 “

´
dkWzpx, kq “ W0

´
dk AiεpHpzqq

‚ Using AiεpHpzqq Ñ δpHpzqq at ε Ñ 0, one readily obtains the known WKB result:

|ψx̂pxq|
2

« W0

ˆ
dk δpHzpx, kqq “

W0

|vg|
, vg|ψx̂pxq|

2
“ const

‚ A more precise result that does not rely on the delta approximation for AiεpHpzqq:

|ψx̂pxq|
2

“ W0
πv

21{3|B|
Ai2ε

ˆ

v

22{3B

ˆ

x`
D2

2B
R

˙˙

‚ The well-known Airy solution near reflection points is subsumed as a special case.

1 2 3 4 5 6 7
x

0.05

0.10

0.15

0.20

0.25

ψ2

(a)n= 15

2 4 6 8 10 12
x

0.05

0.10

0.15

0.20

ψ2

(b)n= 50

17/22
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10am, Thursday, August 7So let’s return to our ‘big questions’...

‚ What is the new small parameter?

- ϵ “ p∆x∆kq´1 ! 1. The absolute value of k does not matter.

- Typically, ϵ coincides with the squared symplectic curvature.

‚ What is the symbol of D̂ in the new representation?

- New symbol = inverse Airy transform of the original one. Corollary: smooth
symbols are preserved up to errors Opϵ2q, which are negligible in MGO.

- The Maslov phase is in the metaplectic transform, not in the envelope equation.

‚ How does one map the field from the ray-aligned coordinates to the x-space?

- No need to do it during the simulation. Do it only to output the results.

- If the phase is not needed, calculate the Wigner function, Wz « W0AiεpHpzqq.

- If one must know the phase, there are various asymptotic formulas for the
metaplectic-transform kernel. Errors do not propagate, this is just local output.

18/22
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10am, Thursday, August 7MGO simulations of O–X conversion (work in progress)

‚ Assume the usual dispersion function with the cold-plasma dielectric tensor ϵ:

Dabpx,kq “ kakb ´ δabk
2

` pc2{ω2
qϵabpxq, 0 “ detD “ D∥DODX

‚ The eigenvalue Di corresponds to the ith mode. Propagate a reference ray using

H “ DOf `DX

a

1 ´ f2, fpt Ñ ´8q Ñ 1, fpt Ñ `8q Ñ 0

‚ In the mode-conversion region, solve the amplitude equation on the reference ray:

Dpx, k̄pxqqΨq̂ ´ i
`

V µ
Bµ ` 1{2 BµV

µ
˘

Ψq̂ ´ 1{2∇K,σ

`

Θσσ1

∇K,σ1Ψq̂

˘

“ 0

Lee Rui Kai’s project 19/22
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˚Standing waves in x-space are propagating waves in τ -space.

p

q
τ k dx

ψq̂pqq “
´
Mq̂Ðτ̂pq, τqψτ̂pτqdτ

‚ In the GO limit, one can use

Mq̂Ðτ̂ “ eiΘ
a

Θqτ{2π, dΘ “ pdq ´ hdτ

‚ On one hand, Mq̂Ðτ̂p0, τq « M0δpτq, M0
.
“ rτ 1p0qs´1{2. Then, ψq̂p0q « M0ψτ̂p0q.

‚ On the other hand, one can also use Mq̂Ðτ̂ after a whole rotation:˚

Mq̂Ðτ̂p0, τq « ´M0δpτq exppiΘœq, ψq̂p0q « ´M0ψτ̂pT q exppiΘœq

‚ Since ψτ̂pT q “ ψτ̂p0q and

h “ 0 ñ Θœ “
¸
pdq “

¸
dz ^ z “

¸
k dx,

one arrives at the Einstein–Brillouin–Keller quantization:

¸
k dx “ 2πpn` 1{2q

˚The minus is due to the Maslov phase, which emerges from
a

Θqτ . 20/22
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˚Metaplectic resonances in wave–particle interactions

‚ The standard condition for resonant interaction with particles is ω “ kv, i.e. the
phase velocity must equal particle’s group velocity˚. Not symplectically invariant!

‚ MGO: the phase of ψτ̂pt, τq “ Ψpt, τqeiθpt,τ q must
satisfy Bτθ “ ω. Within the OHO model,

Bθ{Bϕ “ ω{Ω, Ω
.
“

b

|detpB2
zHpq|

i.e. the Cherenkov and Fermi mechanisms are the same.

‚ E.g., for bounded orbits w/harmonic bouncing: ω “ mΩ

‚ Dissipation power per phase-space volume V, via the Wigner matrix of Ẽ:

dE{dV “ trpσH xWEyq, dV ” dω dk dtdx

‚ In GO, this reduces to the standard formula for the dissipation power density:

P
.
“

ˆ
dE

dV
dω dk “

ω̄

8π
Ẽ:εApt,x, ω̄, k̄qẼ

See more in Ruiz and Dodin (2017); Dodin and Fisch (2014) 21/22
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‚ Developed basic theory of MGO in continuous curved phase-space coordinates:

- The GO parameter k∆x does not matter, what matters is ∆x∆k ” R2.

- Theory of asymptotic MTs is developed for ϵ
.
“ R´2 ! 1 and applied to MGO.

- A simple alternative is proposed to calculating MTs numerically: locally, all one
needs is the Wigner function, which is a symplectic invariant by definition.

Wzpzq « W0AiεpHpzqq

- The Airy-type solutions for fields in x are extended beyond reflection regions.

- The Cherenkov condition is generalized to a symplectically invariant form.
Basically, in MGO, the Cherenkov and Fermi mechanisms are the same.

Bθ{Bϕ “ ω{Ω, Ω
.
“

b

|detpB2
zHpq|

- Symplectically invariant formula for dissipation power per phase-space volume:

dE{dΓ “ trpσHxWEyq

‚ Next: include transverse diffraction (copy from PARADE) and mode conversion.

22/22
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