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e Modeling RF waves is fusion is important, amounts to solving linear Maxwell's egs:
V x V x E — (w?/c*)(eE) = source

e ‘Full-wave’ approach: solve as a boundary-value problem on a
grid, Aoy = S,. Expensive, mostly used for the IC range.

e ‘Ray tracing’ (beam tracing, quasioptics...) for EC & LH waves:

- For E = "W with large k = V0, or small A = 27/|k|:

kxkxE+ (w/c)eg(w, k;z)E =0

DE =0, D=detD

dz®  dD/0k, dk, 0D/ox*
dt 0D /0w’ dt  0D/ow

- Initial-value problem: calculate the amplitude on the rays,

W = —(V vy + 29)W, P.ys = 29W

Images: Bonoli et al. (2007), Poli et al. (2017) 2/22
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UPPPL A more general formulation of geometrical optics is long overdue.

PRINCETON
PLASMA PHYSICS
LABORATORY

Ef’ o Geometrical-optics ordering breaks down near
reflection points, where \/L — oo. Applications:

- Dense plasmas could use EBW heating — need
O-X conversion near w, = w.

|
/\/V\/\A/\/<\ . - Parametric instabilities with trapped modes.

Need a different formulation of GO, with a different small parameter.

Preinhaelter and Kopecky (1973); Hansen et al. (1985); Hansen et al. (2019); Gusakov and Popov (2020); Clod et al. (2024) 3/22



Let’s introduce some machinery...
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e Approximating DE = 0 means approximating D. 1w 1
o Any operator DE(z) = [d(x,2') E(z') de’ on space x can X < x
be expressed through its Weyl symbol using x = x, k = —1V: o K
D(z,k) = [d(x + 3/2,x — 3/2) e *3ds Al < AT
AB = AxB

D = i [ D(@, k) " (@@= ) qg' 4k da” dk”

STRUGGLE NO MORE! o Example 1: The dielectric tensor €(t, x,w, k) is actually
ﬁﬁ#ﬁ;&%ﬁ the Weyl symbol of €, at least up to O(1/wt,1/kL).

o Example 2: Spectrum of the 2-point correlation function
of E is the symbol of |E,){E}|, a.k.a. Wigner matrix:

Wab(t,a?,w, k) = (2#)_4fd7 dg etwT—ik:s
< (Balt +7/2,@ + 52) Byt = 7/2,@ = 2)

Tracy et al. (2014) 4/22



D) IHL Traditional geometrical optics in terms of Weyl symbols
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o Consider an eikonal fields E = e?®)W¥(x) with
0 treated as a prescribed field. Invariant form:

D|E)=0, |BE)=dc'®®), &= Vo)

o Then the envelope |¥) is governed by

DIy =0, D= e @D

e The symbol of the envelope operator D is approximately the shifted symbol of D:

D(z, k) ~ D(z,k + k(z)) = D(z, k(z)) + k,V*(x) + Yakk, O" () + ...

V¥(x) = (0D/ok,)(z, k(x)),  ©"(x) = (0°D/0k,0k,)(z, k(z))
e Weyl expansion: approximate symbol — approximate operator — x representation

0 =DV = D(z,k) ¥ —i(V*0, +120,V*)¥ —1/20,(0"0,T) +...

> 7

-~
dispersion GO propagation diffraction

McDonald (1988), Dodin et al. (2019), used in PARADE: Yanagihara et al. (2019)a; Yanagihara et al. (2019)b. . . 5/22
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The basic idea of metaplectic geometrical optics (MGO)

Traditional GO

k

Maslov’s method

p =X

—

o

p

Metaplectic GO

e One can adopt various representations for the kets and the equation H 1Y) = 0:

- Spatial: use the eigenbasis of the position operator, Z |ez(x)) = x

= (ez(z)[),

V(T

Pq(

)

q)

= (eg(q)|¥)

0 = (ea()|H|¢) =
- One can also use the eigenbasis of a different operator, ¢ |e;(q)) = qlez(q)):
0 = eg(q)|Hl1p) =

- Instead of [z, l%] = 4, the momentum operator is then defined via [, p| = 1.

#(2)):

(Hz)(z)

(H1pg)(q)

o The linear transform that connects 15 and v); is called a metaplectic transform:

Jea(z))s(z) do = (Mabz)(q)

ji<eq

6,22
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e Earlier, we did GO on tangent surfaces and used near-identity
metaplectic transforms (NIMT) to connect those surfaces:*

g\ (A B T
p ) \C D k
e Good: linear transformations conserve Weyl symbols.

A'(q,p) = A(x(q,p), k(q,p))

e Bad: NIMT are hard to compute accurately, and also this
formulation does not yield a self-contained PDE.

e Now, we want to develop MGO via continuous nonlinear transformations. Goal:
symplectically invariant version of PARADE' (diffraction, mode conversion).

40 cm

“Ph.D. thesis by Lopez (2022); also Littlejohn (1985)

21

S (zw/MIN) d

oo g PARADE

f Yanagihara et al. (2019)b; Yanagihara et al. (2021). ..



6\5' PPPL Deriving the field equations in the new representation is easy, but...
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e Narrow beam: one reference ray + diffraction. Having
no crossing rays means having no caustic issues.

DIE)y=0, |E)=c"@|®), p=V0

o Derive the equation for ¥4 as usual:

Dy, —i(V40, +120,VF — DA\)®, — 12V, ,(077V, ,¥,) =0

e The actually challenging questions are as follows:
- What is the small parameter that replaces \/L?

- What is the symbol of D in the new representation?
(The zeroth-order approximation is not enough!)

- How does one map ¥4 to the physical space?

e Need to develop a systematic theory of MT for nonlinear variable transformations.

Image credit: istockphoto.com 8/22



...~ Metaplectic transform for nonlinear canonical transformations

e For nonlinear transformations, the existing theory focuses on exactly solvable
problems — not useful. Need to develop an asymptotic theory from scratch.

e MT is given by a unitary integral operator that connects two representations:

$alg) = / do M(g,2)a(z),  Mg,z) = M (z,q) = (eg(@)lea(@))

e The equations for the kernel of MT, an ‘M-wave’, are Schrodinger equations:

B =X(q,p), k=K(Gp) i=Q(,k), p=P( k)
U |
X(q,—10,)M(q,x) = xM(q, ) Q(z, —i0,)M(x,q) = ¢M(x,q)
K(q,—i0,)M(q,x) = i0,M(q, x) P(x,—i0,)M(x,q) = iﬁqM(x, q)

e Symbols are mapped from (x,k) =z to (q,p) =y by the Wigner function of M:

Ay(y) = / dz pu(y, z) A(2)

Littlejohn (1986),; Mello and Moshinsky (1975) 9/22



F”Lj~ Examples of metaplectic transforms

o Phase-space shift: § =2+ Ay, p = k+ A,
M(q,p) = e’ 0(q —x — Ay), Yg(q) = empq%(q —Ay)
o Symplectic rescaling: § = Z/a, p = ok, with o = const

M(g,x) = |a| 2 8(qg - z/a),  4lg) = lal'Pa(ag)

e Linear symplectic transformation: note that MD = —1

R i(Dq2—2a:q+Aa:2)
(3)=(cn)(i) men-"mg
p ¢ D k)’ & —2m B

o Eikonal transform: § = &, p = k — o' (z)

M(q,p) =e ®Ds(g—z),  ¥i(q) = e Py ()

Standard GO, (x) = ¥(x)e*®®), is just the eikonal metaplectic transform!

10/22



..~ Geometrical optics of M-waves

As mentioned earlier, the equations for M-waves are Schrodinger equations:

K(q,—id,)M(q,x) = 10, M (q, ), P(x, —i@x)]\_f(a:, q) = i&qM(x, q)

Let us assume an eikonal form, M(x,q) = e!F@9D M(x,q). One finds that F is
the type-1 generating function of the canonical transformation (z, k) — (g, p):

k= aazF(x7Q>7 p = _aqF@faq)

Functions K (q,p) and P(x, k) serve as ray Hamiltonians, which are conserved, and
K, and P} serve as group velocities. For example,

0=dK = 0.k(x,q) + Kposk(x,q) = K,= —8£$F/8323QF.

GO amplitude equation 0,901% + 0, (K,MM?) = 0 yields M* = |02 F| x const, so

M ~ eiF\/ﬁa%qF/Qﬁ

I.e. there are ways to approximate M. But how do we find the new coordinates?

“One can also do better than the zeroth-order approximation, see below. Miller (1974)



T~ So how do we find the desired coordinates?
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 For a wave governed by F{]¢> = 0, the ray trajectory is H,(z) = 0. The new
momentum should be h = H, and the position operator 7 should satisfy |7, h| = 1.

e We need them in an ezplicit and simple enough form, so we could solve for M.
We can give up the exact equality h = H to keep the equation for M manageable.

o Let'stryz+— y— (, where z+— vy islinear and y — ( is an asymptotic near-identity.

Sq = V/U, S, =u/u

lzsq/\spEsCTIJsp
: 0 1
= (o)

e Tricky part: phase space has no metric, so there are no angles, perpendiculars, etc.
= can't define s, and s, as orthonormal. Symplecticity requires only vu = v A u.

Tingjing Xing's project. See also Kamran et al. (2009) 12/22



- — Linear shift, rotation, and rescaling
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o Near any given zy on a ray, where H,(zy) = 0, the symbol of His
H,(z) ~ —(z—zq) - Jzg + 1/2(z — z¢) - g(z — 20), g = (0°H)g
o Assuming the basis s, = zg/v and s, = —vzy/e such that
e=(znz)o, v=(lgh"t,  g=detg,
the ray is a harmonic oscillator with orbit radius R = v/€2 and frequency §2:

0
Hy(y) =5 (@ +(p+R)° = R*),  Q=+/|g|sene

o Then, 1; locally satisfies the equation of a quantum harmonic oscillator (QHO).

p p p p

g>0,e>0 g<0,e>0 g>0,e<0 2<0,e<0

This is basically a fancified Williamson diagonalization, see Nicacio (2021) 13/22
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o QHO is well described by GO when its number of quanta, n = R?/2, is large.
Thus, the natural small parameter is the symplectic curvature Kk = R 1.

\% ﬁ\

/

b
(a) / (.)

o Tricky part: the coordinate transformation is singular and & oc|g|?/4/|e|"/? is
formally infinite near inflection points, where ¢ — 0:

L. 2z (0H,\®  d%k [(0H,\"
c=Ento="ge o ) T ae (o

o More generally, the symplectic scale is as R = vVAxz Ak, so k = (Ax Ak) Y2

14/22
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e Expand the wave Hamiltonian in p near the ray trajectory
p(q) as H(g,p) = V(q)(p —p(q)). Then,

p(q) T = T(Cj)? iL — 1/2 (Vﬁ +ﬁ‘7> — ‘A/p(cj)a [727 h] =1
e One can find M explicitly and, with some algebra, show that

i~ AiL(H,(2) — h) 6(7(z) -

w0 - g A (s ee) | /\ ﬁ N
e = (J0,H,) - (02H,)(J0,H,) \/ \/ \/ \/ \/ \/

e The symbols in the two representations are connected by the Airy transform.” For
smooth symbols, such as D, there are no corrections of order (Ax Ak) !

~

2) ~ [Ai(h — Hy(2) Ac(r(2),h)dh,  Dy(z) ~ D(¢(2))

* Widder (1979) 15/22



6J PPPL Result #3: Wigner function W = symb (|¢)) (3|)
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e Everything interesting can be expressed through Wigner functions, so one might
not even need a field. As symbols, Wigner functions are easy to remap!

e In the ray-aligned coordinates, waves are stationary (w/o dissipation, diffraction)
H[gpy =0 = Wl h) = Wod(h)
o In (x,k), MGO waved always have Airy-type Wigner functions with scale ¢:
W,(x, k) = /dT dh We (T, h) p(x, k,m,h) = Wo Al (H (2, k)).

e These complicated profiles are caused by unfortunate coordinates, not by physics.

W(x)
0.2 r

(a)

0.1F

| /\ Ninwawas
AW

- X
4 5 6

0.1}

—02f

e = (JOzHy) - (02 Hy)(Joz Hy) 16/22



VPP e (@)2 = [ dk Wi, k) = W, [ dk Ai.(H(2))
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e Using Ai.(H(z)) — 0(H(z)) at € — 0, one readily obtains the known WKB result:

[Pa ()2 ~ WO/dk O(Hy(z, k)) = Wo vg|hz(2)]? = const

|/Ug‘7

o A more precise result that does not rely on the delta approximation for Ai.(H (z)):

v

[z (x)|? = W, AiZ [ x+D—2R
w01 Bl e \ 2288 2B

e The well-known Airy solution near reflection points is subsumed as a special case.

o [
k 025} n=15 @) 020} n=>50 . (b)
\ 0.20F 015t
0.15F |

N

—_
[\
w
N
W
[@))
~
=



oo~ So let’s return to our ‘big questions’...
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o What is the new small parameter?

- ¢ = (Az Ak)™! « 1. The absolute value of k£ does not matter.
- Typically, € coincides with the squared symplectic curvature.

e What is the symbol of D in the new representation?

- New symbol = inverse Airy transform of the original one. Corollary: smooth
symbols are preserved up to errors O(e?), which are negligible in MGO.

- The Maslov phase is in the metaplectic transform, not in the envelope equation.

e How does one map the field from the ray-aligned coordinates to the x-space?

- No need to do it during the simulation. Do it only to output the results.
- If the phase is not needed, calculate the Wigner function, W, ~ Wy Ai.(H (z)).

- If one must know the phase, there are various asymptotic formulas for the
metaplectic-transform kernel. Errors do not propagate, this is just local output.

18,22
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e Assume the usual dispersion function with the cold-plasma dielectric tensor e:

Dab(a:, k) = k.kp — 5abk2 + (02/w2)eab(az), 0=detD = D“D()DX

e The eigenvalue D, corresponds to the ith mode. Propagate a reference ray using
H:DOf+DXV1_f27 f(t—>—OO>—>17 f(t—>—1—OO>—>O

In the mode-conversion region, solve the amplitude equation on the reference ray:

k ; V#o, + 120, V" — 12V @7V =
D(z, k(x))®q — i + 1/2 2V, 1,0%¥q) =0
det D vs wi/w? Plot of Final X-Mode Amplitude Against Initial k
1.00 0.05
0.75 18
0.04
0.50
0.25 - 161
0.03 o
T
;0,00 > g
X ] = =
o g 141
e 0.02
—0.50 4 1.21
0.01
-0.75
1.0
-1.00 . . . . . : . 0.00 : : : , , ‘ :
0.0 0 g e 0ELDE e -0.82 -080 -0.78 -0.76 -0.74 -072  -0.70

wifw? Initial k.

Lee Rui Kai's project 19/22



F“~ *Standing waves in x-space are propagating waves in T-space.
P Vi(q) = | Mys:(q,7) s(7)dr
q e In the GO limit, one can use

Mg+ = ei@\/m, d® = pdqg — hdr
e On one hand, M4 +(0,7) ~ Mys(7), My = [7'(0)]~Y/2. Then, ¥4(0) ~ My);(0).
* On the other hand, one can also use M. ; after a whole rotation:”
Mg+(0,7) ~ =Mod(7) exp(iOp),  ¥4(0) ~ —Mo#(T') exp(iOp)
e Since ¥+(T) = 1:(0) and
h=0 = Op=¢pdg=¢dznz=¢kdz,

one arrives at the Einstein—Brillouin—Keller quantization:

¢ kdx =2m(n + 1/2)

*The minus is due to the Maslov phase, which emerges from /Oqr. 20/22



-~ — Metaplectic resonances in wave—particle interactions

e The standard condition for resonant interaction with particles is w = kv, i.e. the
phase velocity must equal particle’s group velocity*. Not symplectically invariant!

e MGO: the phase of :(t,7) = U(t,7)e?®™) must
satisfy 0,0 = w. Within the OHO model,

00/06 = w/Q, Q= /| det(32H,)

I.e. the Cherenkov and Fermi mechanisms are the same.

e E.g., for bounded orbits w/harmonic bouncing: w = m2

o Dissipation power per phase-space volume V, via the Wigner matrix of E:
d€/dV = tr(ecu W g)), dV =dwdkdtda
e In GO, this reduces to the standard formula for the dissipation power density:

. . .
Qi/d—Sdek:%ETeA(t,m,@,k)E

See more in Ruiz and Dodin (2017); Dodin and Fisch (2014) 21/22



e Summary
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e Developed basic theory of MGO in continuous curved phase-space coordinates:

- The GO parameter KAz does not matter, what matters is Az Ak = R?.
- Theory of asymptotic MTs is developed for e = R ? « 1 and applied to MGO.

- A simple alternative is proposed to calculating MTs numerically: locally, all one
needs is the Wigner function, which is a symplectic invariant by definition.

W,(z) ~ Wy Ai.(H(2))

- The Airy-type solutions for fields in z are extended beyond reflection regions.

- The Cherenkov condition is generalized to a symplectically invariant form.
Basically, in MGO, the Cherenkov and Fermi mechanisms are the same.

00/06 = w/Q, Q= /| det(32H,)
- Symplectically invariant formula for dissipation power per phase-space volume:

de¢/dl" = tr(ou(Wg))

e Next: include transverse diffraction (copy from PARADE) and mode conversion.

22/22
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