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o Drift-wave (DW) turbulence is ubiquitous in magnetized plasmas. In fusion science,
DW turbulence is actively studied because it affects plasma confinement.

o DW turbulence can spontaneously generate zonal flows (ZF), which are sheared
E x B flows with k = 0. ZFs reduce turbulent transport but can be unstable.

primary instabilities (PI)
pump up turbulence
|
secondary instability (SI)
creates zonal flows
|
zonal flows saturate,
oscillate, or exhibit a
tertiary instability (TI)

Image taken from https://w3.pppl.gov/~hammett/viz/viz.html 3/24
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o~ Dimits shift is a problem that encompasses all DZ-ZF physics
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e Predictions of nonlinear simulations differ from predictions of nonlinear simulations.

Dimits shift = difference in the critical temperature gradients (~ 1/L7;).

e Apparently, zonal flows stabilize turbulence to some extent. How do they do it?

e Answering this requires understanding of many aspects of DW-ZF interactions.
Here, we do it within a simple model that allows for a complete analytical theory.
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e Turbulence model

Quantumlike formulation

e Parameter space of zonal flows
e Explanation of the Dimits shift

e Other applications

5,/24



S)PPRL Hasegawa—Mima model (HMM) captures the basic interactions.
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AAAAAAAAAA

e Slab approximation, (x,y) L B, incompressible E x B flow, cold ions, hot electrons:

om; +vexp - Vn, =0, n;,=—-Fx+w(t,z,y) —V-(1+X.)Vy=4drw

b+ {pow) — Boyp =0,  (Vi-d)p=u

o Electrons respond adiabatically to DW (k) # 0) and do not respond to ZF (k| = 0):
adW — 17 a\sz =0

e HMM has no primary instabilities
and thus no Dimits shift either.

e But one can use HMM to study
other physics that contributes to the
Dimits shift. Let’s!

Hammett et al. (1993); Krommes and Kim (2000). . . 6/24



@ PPPL The qguasilinear approximation captures DW-ZF interactions.
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e Let us split the equation for w into the zonal average and fluctuations:

O + 0,000y = 0, () = [7%(..) dy/L,

O + Udyw — [B+ (03U)]0yp =V - VW — Vv - Vb

Y

neglected (QL model)

Quasilinear mHME

Nrmlineﬁr mHME

0 240 480 720 960 12000 120 240 360 430 600 O 80 160 240 320 400 0 60 120 180 240 300
i t t t

o Using ¢ = (V7 — 1) 1, one can express eqn for w as ‘drifton’ Schrodinger eqgn:

N

iow = Hw, H=kU+@B+0"k,01+E)",  k=—iV

Ruiz et al. (2016); Zhou et al. (2019) 7/24



FDPL Kelvin—Helmholtz instability as drifton-vacuum breakdown

PLASMA F‘HY Ics
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o The Hamiltonian H is pseudo-Hermitian: using @ = 0+ U’ one has a
transformation @ = Q/21) that makes the Hamiltonian Hermitian, as HQ = QH:

i = Ho = iom=[Q VPHQ)Q Yy  (for U = 0)

J/

Hermitian if Q_l exists

o When |[U"| > 8, i.e. U > /g2, then Q! does not exist = pseudo-Hermiticity
breaks = "“drifton-vacuum breakdown”, a.k.a. Kelvin—Helmholtz instability (KHI).

k2 U=8q° KHI-stable i Krl-unsta:)le
1 + 62 (ke >
Y
/YKHI |k UO’ (1 - ) 1 — Rayleigh-Kuo

q2 U02 q4 threshold

D
?9??
o KHI # tertiary instability! Actually, the .
regime U < 3/q¢? will be more relevant. o E—

Zhu et al. (2018)a; Zhu et al. (2018)c; cf. Kuo (1949),; Numata et al. (2007); Kim and Diamond (2002) 8/24



...~ Let’s introduce some machinery...

o Any operator Ai(x) = [A(x,x')h(x)dx’ can be expressed

le1
through its Weyl symbol using X = x and k = —iV: A :X
A(x, k) = [ A(x +5/2,x — 3/2) e***ds L&k
Al < A
A\ — _(273)2n f A(X/7 k/) eik”-(x’—i)—ix”-(k’—ﬁ) dX/ dk/ dX” dk// A\’B\ < A +B

STRUGGLE NO MORE! o Example 1: The dielectric tensor €(¢,x,w, k) is actually the

f;ﬁ#ﬁ%&%ﬁ Weyl symbol of €, at least up to O(1/wt,1/kL).

o Example 2: Spectrum of the 2-point correlation function of
any v is the symbol of W = [ (v|, a.k.a. Wigner function:

Wit,x,w, k) = (27T)_4fd7' dg eiwT—ik's
Ot + 2,3+ 52) 6t — 7o, — 5)

" (%,k) = (t,x, —idg, —iV) 9/24



Ki”“ Quantumlike kinetic theory for the Wigner function W
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o The Schradinger equation for @ — the von Neumann equation for W = ) (w:

io |0y =H|w) = oW =[HW] = W ={(ymbW)

o The Wigner function W (¢, z,k) = [dse ®S(w(t,x + s/2)w(t,x — s/2)) satisfies

— = {Hu, W} + [Ha, W]

e 2 ko kW
ot ot o ¥ Raly VY

ow ou ¢ / dk 1
(2m)2 1 + k7 1+ k7

k 1 k 1 k
i = kU + 2 o B g - S {2
1+k7 2 1+ k7 2 1+ k3

o Geometrical-optics limit: improved wave kinetic equation (iIWKE) with new terms:

W e wr s 2w, U a/ dk  kyk,W
ot H’ A ot ox) (2m)2 (1 + k)2

Hy ~ kU + ky(B+U"/(1+E),  Ha~—-U"kyky/(1+k7)

Ruiz et al. (2016), Parker (2016); cf. Smolyakov and Diamond (1999); Krommes and Kim (2000). . . 10/24
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UL Topology of the drifton phase space in the GO regime g2 < 1 + k2

e We are mostly interested in ¢° < 1 + k7, where geometrical optics (GO) works.
From the ray egs, one finds that the drifton phase space (z, k;.) changes topology at

no stationary modes)

KHI-stable | KHI-unstable
(YKHI > 0)

Rayleigh-Kuo E
threshold :
> B T,R :
Uc1 - > > _ 1
Al e |
——————————— P,T,R!

1+ kﬁ q2

Zhu et al. (2018)b
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6JI PPL Onset of ZFs: secondary (modulational, zonostrophic) instability
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o ZFs form spontaneously at small amplitudes (U « U.;) = linear instability of
drifton plasma. lIts dispersion relation is derived just like for Langmuir waves:”

2 dk 1 kok? 2
1—q/ Ohakty 0 (34 Y| — g
w ) (27)% w—qug (14 k7)? 0k, 1+ k7

1.2
<& 0.8
0.4
&a 0
-0.4
-2 0 2T =27 0 2m =27 0 21
x x x

e Simulations show that ZFs saturate with the same ¢ that corresponds to the
maximum growth rate. What is the typical saturation amplitude? Let’s derive it!

“For the general expression beyond the GO limit, see Ruiz et al. (2016); Zhou et al. (2019). 12/24



o5 Step 1: equation of state at U < Uy, i.e., |[U"| « (3

o Let us rewrite iWKE in the following form using the group velocity vy = 0H/0k,:

ow 0 0 OHu u”
ot +&:1:(Wvg)_&—kx(w 0x ) +5+U”W0g
negﬁgible

e Integration over k leads to the continuity equation for the drifton density V:

ON +0,J~0, N=[Wdk, J=[Wuo.dk

e Using 0N ~ —0,J, one can express U as a 02
local function of N (“equation of state”): 0.1

oU o[ J 1. aJ &N ngﬂJMﬂvwﬁ/\/w
_ 5 ~ ~ vV |

ot ox |2(8+ U 28~ 28 s

U550 N AVAU WAL

0.0

‘ — r:zﬁﬂ('l.ll |

Zhu and Dodin (2021); Zhou et al. (2019) 13/24



- !MLTI) - Step 2: nonlinear Schrodinger equation (NLSE) and typical g
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» Quasimonochromatic DW: 1 = e***y and U ~ {|1|?)/43 — NLSE model:

oH M (Ak,)2 VT 5%
AxHotFmdhet G = (a +”g&x)¢ X g2 TRUY

60 (2-a) (2-b)
0 80 160 240 320 400 0 80 160 240 320 400 0 80 160 240 320 400 0 80 160 240 320 400
t t t t

NLSE solitons at small amplitudes, quasistationary ZFs at larger amplitudes

e The linear grow rate is maximized at ¢ ~ (1 + kz)f/ﬁ The equation of state
says that N ~ UB. From here, one gets U ~ qu/(l +k2)%.

Zhou et al. (2019) 14/24
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“ e~ Typical parameters of zonal flows at saturation (estimates)
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e So, let's summarize: NLSE gives U ~ ¢°/(1+k;)?, if U < Uca. If more turbulence
energy is available, then ZFs approach U ~ U, and dissipate the rest via the KHI.

e Thus, saturated ZFs typically have ¢* ~ 1 + k. and U ~ U, at this g¢:

U~ B/(1L+k2)=U.,

2 2 _
¢ ~1+k,=q

2

*

e In the original units: assuming k, ~ p;!, one has U ~ ¢T'/eBL,, so k,U ~ w..

Zhu and Dodin (2021)

Ueo = BIG°

Rayleigh-Kuo
threshold R
> B T,R
Sl 2 2
2 (1 + ky) -q°

-
P
-
-
_
|

= q(N(U)) from
linear theory

KHI-stable ; KHI-unstable
no stationary modes}  (ykHi > 0)

merging

15/24
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formation but can explain it qualitatively.

k,(8+U") N
= k N — t
1+k§,+k§+ U, U 2ﬁJrcons
t | k< 1+k;, ¢ =-U"JU k,= const
k2 (1-+-k5)2 q2 N
S T = — — 1 | —
H 01(2m-|-V)—|—02, m T V <1+k§ )2
N N
A ANYA AN y
q2<1+k3 q2>1+kf

o If ¢ <1+ k2, driftons reside near minima of V, so the system is stable.

e The IWKE is only marginally applicable to ZF

o If g2 > 1+ kg driftons reside near maxima of V. The system can lower the energy

by bifurcating to a lower-q state, so it is unstable to ZF merging.

16,24



A
UPPPL Let’s add primary instability & dissipation: the Terry—Horton model
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e In the Terry—Horton model, two additional operators are introduced: S is responsible
for the primary instability, and D models friction and viscosity.

w=(V:-a+id)p, 0=6Fk,), D=1-pV2

B=45: w(x,y,t =200 w(z,y,t = 300) w(z,y,t = 400 10
20 0D — U@ '
= 0
20 -4 20— 1
e T
f=065: w(x,y,t = 25)
20 | (bl)_ —U(z) |1
> 0 —
-0.1 0 0.1
_20 L —— 1L
B—
0 20 40 600
i I I

For this modified Terry—Horton model, see St-Onge (2017) . Various 6(ky) can be used, depending on the physics of interest. 17/24
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6J| PPL Primary waves in inhomogeneous zonal flows

e The linear primary waves are governed by drifton Schrodinger equation:

oy = Hw,  H=kyU+ky(8+UN1+k2+k2—id(k,)] " —3iD

e The lowest-order modes have the largest growth rates. They are localized” in
(x, k), so the drifton Hamiltonian can be approximated with its Taylor expansion:

oW = {Hag, W} + [Ha, W], H ~ co + c12% + cok?

“DWs tend to be sheared away in (or propagate out from) regions of large velocity shear \U’]. 18/24



..~ DW modes satisfy the equation of a quantum harmonic oscillator.

e Since H ~ co + 112 + 02/]%:%, a DW is just a quantum harmonic oscillator with
complex coefficients and the spectrum that satisfies €,, = (2n + 1)¥:

2
(—192 4 :1:2) W= ew, 1w, ~ H, (i> e /2

da:2 NG
. in/2(1+ B/UY) o2 , ky (B + UY)
V= — = — k,U, Dy — -2
7 L 5 Gt R Ry
o Using U and ¢° = —U"/U from our results for the Hasegawa—Mima model, one

can calculate the growth rate explicitly. The predicted rate agrees with simulations.

ky(B + UY) — ik, U/ (1 + 8/UY)/2
L+ k2 —1id

:W(Iinear) I A’}/(Ug)

— /primary

yr1 = —Do + Im [

e In summary, DW are localized near extrema of the zonal velocity U. Trapped
modes have v = vy + Avy(U"), so U” can affect primary instabilities.

Zhu et al. (2020)a 19/24
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The predicted rates agree with linear simulations with prescribed U”.

LABORATORY

YTI = —D() + Im

0.5

ky(8 + UY) — ik, Uj\/(1 + B/U) /2

(linear)

H frunavilayfméde

Y11

numerical yry
o analytical &
O analytical fy%

"
Uo

YTI

0.5

1+k§—z’(5

H frunawlfayfmeidef - 73 fffff 3 fffff 3 ffffff

O
.......
0066606060600

numerical 7y
o analytical vy | |
O analytical vi;

4 6 8
U
0

— Iprimary

---- zr (p2)
— U(a)

+ Av(Uy)

-40

40

The tertiary instability can be viewed as the primary instability modified by ZFs.

- If vp1 < 0, turbulence is suppressed; ZFs survive, assuming D acts only on DWs.

- If vpr > 0, the system ends up in a turbulent state. A~ is the Dimits shift!

Zhu et al. (2020)b

20/24
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PPPL Using our estimate for U”, we are also match nonlinear simulations.
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o We calculate the values of 3 that correspond to 'yl()liflrflzi; = 0 and 71 = 0 using

Ul ~ q?U.. The difference between these values is the Dimits shift (green).

o Compared with related results from St-Onge (2017), denoted 5, our model is

N S

a better fit at both large and small §. (We assume § = dpk,.)

o D=1-0.01v? D = 0.3|k,| + 104V
"‘-\“g I | | O zonal 40 ‘; ol | | o zonal
"-‘8 x turbulent 2a0LO O x x turbulent
20 I “\"O\‘ R ﬁlin I \g\ g 8 9 — ﬁlin
. g v g A il — Bin + Aps
o | \8 — o 5l e 9w Ay
‘\‘O . | \Q\ O . X X
R Q.
\\‘ 2 P el
. O
01 07 0.5 1 2 4

Zhu et al. (2020)b 21/24



@!RNICET!NL Relation to the Kelvin—Helmholtz instability
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- KHI: delocalized modes, destabilized by U”, does not rely on dissipation
- dissipative TI: localized modes, stabilized by U”, relies on dissipation

T
2 - T T
© -
0 \ intermediate mode
KH mode
?-\
q, = 1.6 = const
21
-4
0 0.4 0.8 1.2
do

10
15
TRz s (LE 'Y

10
1-5

: -10

0

x
(d) intermediate mod

" do = 1.5 = const

runaway mode

<— trapped mode

0 0.5

1 1.5
4z

The KHI is subsumed under the main equations, but it is a different instability:

22/24
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PPPL Beyond the adiabatic approximation: Hasegawa—Wakatani model

PLASMA PHYSICS
LABORATORY

o Next level of complexity: give up the assumption of adiabatic n(y), treat n as
an independent field. For example, Hasegawa—Wakatani model, with w = VZp—n:

orw + {p, w} = B, — Dw, om + {o,n} = a(p —n) — o, — Dn

e The physics mostly remains the same, but ZF can dissipate. This leads to

predator—prey oscillations (PPO).

e Also, since DWs can exchange energy with U and with IV, there are two types of
PPO, and analytic predictions are more difficult.”

U Keg ‘ ....... Epw —Ey /4 En/4 20 0 20 -20 0 20 -20 0 20 -20 0 20
v | V| T =——— | ' ' :
10 \ 28 200 gl (b) |
. v v /0 . 60
N w
v Y 120 40
nl ¥ 20 v o0l T
V) Vg ¥ 0 TN e e R ,
‘ ‘ e L9 6 N P AR ARG e K |l ) )
-20 0 20 0 200 400 600 800 1000 ' 50 0 10 40 0 10 -0 0 10 -0 o 10
x t Yy Yy Yy Yy
Zhu et al. (2020)a * The secondary instability changes too, cf. lvanov et al. (2020) .

40
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e Summary

PLASMA PHYSICS
LABORATORY

Important things missed in earlier studies:

- Heuristic arguments are not enough, WKE must be derived from first principles.
- A/L and U"/3 are not negligible, one must look beyond geometrical optics.

Scalings for processes that are not directly determined by primary instabilities (PI)
and dissipation can be understood from the Hasegawa—Mima model.

Adding dissipation introduces a new tertiary instability (basically, a modified Pl)
that is more relevant than the commonly known Kelvin—Helmholtz instability.

Dimits shift:

- Dissipation localizes the tertiary modes near the ZF-velocity extrema.

- Their growth rate can be made negative by U”, leading to the Dimits shift.

- An analytic theory is developed within the Terry—Horton model.

- Two-fluid models exhibit additional effects, but the qualitative physics is similar.

24/24



o \Weyl symbols for dynamo theory without scale separation

e A similar formalism applied to MHD leads to a revised theory of plasma dynamo:

v+ (v-V)v

=(b-V)b—- VP +vV3v

0/b =V x (v xb) +nV?b

V-v=0,

V:-b=20

iOW =H»W —W«H' —i7 "W + T

H++ H+—
REES

_ . 'k _
Hfji = 04j (Ef x k — 21/+/<:2) + zk—; * Zlfj * ko
H " = — 690 _k* — iz +'ﬁ*_i*k

o EMF is a Hodge star of the integrated Elsdsser Wigner matrix, € = % [ W dk.

 Mean-field equations for W= =V x (v + b) vyield the nonlocal EMF from first
principles, subsume known dynamo mechanisms a new one caused by (v - j).

OW* = —k x {[(127%_2 X v_v;) : E] (l/;/l%_Q X v‘vi)} — %2(V+v_vi +v.wh) + S+

Jin and Dodin (2025)

Sf —

+
i Ez’jk/

(ks » Wi — b WiEF « by )

25 /24



"Weyl symbols for quasilinear theory of wave—particle interactions

e Quasilinear theory of wave—particle interactions: write the QL term in the operator
form through the Green’s operator GG of LVE, then Weyl-expand this operator.

e This leads to a fully conservative equation for the “oscillation-center” distribution
F = f+0, (©0pf) captures both QL diffusion and ponderomotive forces:

oF ={H+®, F} +— ‘ (Da—F>

o.f ={H + H, f} ot op op
P AU T 0 kk' W
©= o0 dwd 20w —k-v+9)|4_,
atf_{ﬁaf}:&a(ﬁaﬁaﬂf) d — 0 dw dk kV_V}EI
op 2w -k -v)

NaB _ /naninp a_ JjeBo.H T
D’ = @*Gu”), u*=J*igH D:w/dkkkTWﬁ(t,x,k-v,k;p)

e Conserves nonresonant-wave action. Subsumes many results previously derived
ad hoc, including fluctuation theory and Balescu—Lenard collisions (not shown).

Dodin (2022),; Dodin (2024) 26/24
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