
MAS Executive Classroom 2
Wednesday, August 6, 11am

Drift-wave turbulence as quantumlike plasma

Ilya Dodin

Princeton Plasma Physics Laboratory

in collaboration with

Hongxuan Zhu

Yao Zhou

Daniel Ruiz

Seminar

Nanyang Technological University, Singapore

August 6, 2025

https://www.princeton.edu/„idodin/

https://www.princeton.edu/~idodin/


MAS Executive Classroom 2
Wednesday, August 6, 11amRelated papers

‚ Overview: H. Zhu and I. Y. Dodin, Wave-kinetic approach to zonal-flow dynamics: recent advances, Phys. Plasmas
28, 032303 (2021).

‚ H. Zhu, Y. Zhou, and I. Y. Dodin, Theory of the tertiary instability and the Dimits shift within a scalar model, J.
Plasma Phys. 86, 905860405 (2020).

‚ H. Zhu, Y. Zhou, and I. Y. Dodin, Theory of the tertiary instability and the Dimits shift from reduced drift-wave

models, Phys. Rev. Lett. 124, 055002 (2020).

‚ H. Zhu, Y. Zhou, and I. Y. Dodin, Nonlinear saturation and oscillations of collisionless zonal flows, New J. Phys.
21, 063009 (2019).

‚ Y. Zhou, H. Zhu, and I. Y Dodin, Formation of solitary zonal structures via the modulational instability of drift

waves, Plasma Phys. Control. Fusion 61, 075003 (2019).

‚ D. E. Ruiz, M. E. Glinsky, and I. Y. Dodin, Wave kinetic equation for inhomogeneous drift-wave turbulence beyond

the quasilinear approximation, J. Plasma Phys. 85, 905850101 (2019).

‚ H. Zhu, Y. Zhou, and I. Y. Dodin, On the Rayleigh–Kuo criterion for the tertiary instability of zonal flows, Phys.
Plasmas 25, 082121 (2018).

‚ H. Zhu, Y. Zhou, and I. Y. Dodin, On the structure of the drifton phase space and its relation to the Rayleigh–Kuo
criterion of the zonal-flow stability, Phys. Plasmas 25, 072121 (2018).

‚ H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Wave kinetics of drift-wave turbulence and zonal flows beyond the
ray approximation, Phys. Rev. E 97, 053210 (2018).

‚ D. E. Ruiz, J. B. Parker, E. L. Shi, and I. Y. Dodin, Zonal-flow dynamics from a phase-space perspective, Phys.
Plasmas 23, 122304 (2016).

2/24



MAS Executive Classroom 2
Wednesday, August 6, 11amIntroduction

‚ Drift-wave (DW) turbulence is ubiquitous in magnetized plasmas. In fusion science,
DW turbulence is actively studied because it affects plasma confinement.

‚ DW turbulence can spontaneously generate zonal flows (ZF), which are sheared
E ˆB flows with k∥ “ 0. ZFs reduce turbulent transport but can be unstable.

primary instabilities (PI)
pump up turbulence

Ó

secondary instability (SI)
creates zonal flows

Ó

zonal flows saturate,
oscillate, or exhibit a

tertiary instability (TI)

Image taken from https://w3.pppl.gov/„hammett/viz/viz.html 3/24
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‚ Predictions of nonlinear simulations differ from predictions of nonlinear simulations.
Dimits shift = difference in the critical temperature gradients („ 1{LTi).

‚ Apparently, zonal flows stabilize turbulence to some extent. How do they do it?

‚ Answering this requires understanding of many aspects of DW–ZF interactions.
Here, we do it within a simple model that allows for a complete analytical theory.

Dimits et al. (2000) 4/24
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‚ Turbulence model

‚ Quantumlike formulation

‚ Parameter space of zonal flows

‚ Explanation of the Dimits shift

‚ Other applications

5/24
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‚ Slab approximation, px, yq K B, incompressible EˆB flow, cold ions, hot electrons:

Btni ` vEˆB ¨ ∇ni “ 0, ni “ ´βx` wpt, x, yq ´ ∇ ¨ p1 ` pχeq∇φ “ 4πw

Btw ` tφ,wu ´ βByφ “ 0, p∇2
K ´ paqφ “ w

‚ Electrons respond adiabatically to DW (k∥ ‰ 0) and do not respond to ZF (k∥ “ 0):

padw “ 1, pazf “ 0

‚ HMM has no primary instabilities
and thus no Dimits shift either.

‚ But one can use HMM to study
other physics that contributes to the
Dimits shift. Let’s!

Hammett et al. (1993); Krommes and Kim (2000) . . . 6/24
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‚ Let us split the equation for w into the zonal average and fluctuations:

ZF velocity: BtU ` Bxṽxṽy “ 0, p...q “
´ Ly

0
p...qdy{Ly

DW: Btw̃ ` UByw̃ ´ rβ ` pB
2
xUqsByφ̃ “ ṽ ¨ ∇w̃ ´ ṽ ¨ ∇w̃

loooooooooomoooooooooon

neglected (QL model)

‚ Using φ̃ “ p∇2
K ´ 1q´1w̃, one can express eqn for w as ‘drifton’ Schrödinger eqn:

iBtw̃ “ pHw̃, pH “ pky pU ` pβ ` pU 2
qpkyp1 ` pk2Kq

´1, pk “ ´i∇

Ruiz et al. (2016); Zhou et al. (2019) 7/24
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‚ The Hamiltonian pH is pseudo-Hermitian: using pQ
.
“ β ` pU 2, one has a

transformation w̃ “ pQ1{2η that makes the Hamiltonian Hermitian, as pH pQ “ pQ pH::

iBtw̃ “ pHw̃ ñ iBtη “ r pQ´1{2
p pH pQq pQ´1{2

s
loooooooooomoooooooooon

Hermitian if pQ´1 exists

η pfor BtU “ 0q

‚ When |U 2| ą β, i.e. U ą β{q2, then pQ´1 does not exist ñ pseudo-Hermiticity
breaks ñ “drifton-vacuum breakdown”, a.k.a. Kelvin–Helmholtz instability (KHI).

γKHI « |kyU0|

ˆ

1 ´
1 ` k2y
q2

˙

d

1 ´
β2

U2
0q

4

‚ KHI ‰ tertiary instability! Actually, the
regime U À β{q2 will be more relevant.

Zhu et al. (2018)a; Zhu et al. (2018)c ; cf. Kuo (1949); Numata et al. (2007); Kim and Diamond (2002) 8/24
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‚ Any operator pAψpxq “
´
Apx, x1qψpx1qdx1 can be expressed

through its Weyl symbol using px “ x and pk “ ´i∇:

Apx, kq “
´
Apx ` s{2, x ´ s{2q e´ik¨s ds

pA “ 1
p2πq2n

´
Apx1, k1

q eik
2
¨px1

´pxq´ix2
¨pk1

´pkq dx1 dk1 dx2 dk2

p1 ô 1

px ô x

pk ô k

pA:
ô A:

pApB ô A ‹ B

‚ Example 1: The dielectric tensor ϵpt,x, ω,kq is actually the
Weyl symbol of pϵ, at least up to Op1{ωτ, 1{kLq.

‚ Example 2: Spectrum of the 2-point correlation function of
any ψ is the symbol of xW “ |ψy xψ|, a.k.a. Wigner function:

W pt,x, ω,kq “ p2πq´4
´
dτ ds eiωτ´ik¨s

ˆ ψpt` τ{2,x ` s{2qψ˚
pt´ τ{2,x ´ s{2q

˚
ppx,pkq ” pt, x, ´iBt, ´i∇q 9/24
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‚ The Schrödinger equation for w̃ Ñ the von Neumann equation for xW “ |w̃y xw̃|:

iBt |w̃y “ pH |w̃y ñ BtxW “ r pH,xW s ñ W “ xsymbxW y

‚ The Wigner function W pt, x,kq
.
“
´
ds e´ik¨sxw̃pt,x ` s{2qw̃pt,x ´ s{2qy satisfies

BW

Bt
“ ttHH,W uu ` rrHA,W ss,

BU

Bt
“

B

Bx

ˆ
dk

p2πq2

1

1 ` k2
K

‹ kxkyW ‹
1

1 ` k2
K

HH “ kyU `
βky

1 ` k2
K

`
1

2

””

U
2
,

ky

1 ` k2
K

ıı

, HA “
1

2

!!

U
2
,

ky

1 ` k2
K

))

‚ Geometrical-optics limit: improved wave kinetic equation (iWKE) with new terms:

BW

Bt
“ tHH,W u ` 2HAW ,

BU

Bt
“

B

Bx

ˆ
dk

p2πq2

kxkyW

p1 ` k2
K

q2

HH « kyU ` kypβ ` U
2
q{p1 ` k

2
K

q, HA « ´U
3
kxky{p1 ` k

2
K

q
2

Ruiz et al. (2016); Parker (2016) ; cf. Smolyakov and Diamond (1999); Krommes and Kim (2000) . . . 10/24
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‚ We are mostly interested in q2 À 1 ` k2y, where geometrical optics (GO) works.
From the ray eqs, one finds that the drifton phase space px, kxq changes topology at

Uc1 “
β

2p1 ` k2yq ´ q2
, Uc2 “

β

q2
ă Uc1

No passing (P) trajectories at U ą Uc1.

No trapped (T) trajectories at U ą Uc2.

Only runaway (R) trajectories – KHI stabilized

U ă Uc1 Uc1 ă U ă Uc2 U ą Uc2

Zhu et al. (2018)b 11/24
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‚ ZFs form spontaneously at small amplitudes (U ! Uc1) = linear instability of
drifton plasma. Its dispersion relation is derived just like for Langmuir waves:˚

1 ´
q2

ω

ˆ
dk

p2πq2

1

ω ´ qvg

βkxk
2
y

p1 ` k2
K

q2

B

Bkx

„ˆ

1 ´
q2

1 ` k2
K

˙

W0

ȷ

“ 0

‚ Simulations show that ZFs saturate with the same q that corresponds to the
maximum growth rate. What is the typical saturation amplitude? Let’s derive it!

˚For the general expression beyond the GO limit, see Ruiz et al. (2016); Zhou et al. (2019) . 12/24
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‚ Let us rewrite iWKE in the following form using the group velocity vg “ BHH{Bkx:

BW

Bt
`

B

Bx
pWvgq “

B

Bkx

ˆ

W
BHH

Bx

˙

`
U3

β ` U 2
Wvg

loooooomoooooon

negligible

‚ Integration over k leads to the continuity equation for the drifton density N :

BtN ` BxJ « 0, N
.
“
´
W dk, J

.
“
´
Wvg dk

‚ Using BtN « ´BxJ , one can express U as a
local function of N (“equation of state”):

BU

Bt
“ ´

B

Bx

„

J

2pβ ` U 2q

ȷ

« ´
BxJ

2β
«

BtN

2β

U «
N

2β
“

xw̃2y

2β

Zhu and Dodin (2021); Zhou et al. (2019) 13/24
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‚ Quasimonochromatic DW: w̃ “ eik¨xψ and U « x|ψ|2y{4β Ñ NLSE model:

H « H0 `
BH
Bkx

∆kx `
B2H
Bk2x

p∆kxq2

2
ñ i

ˆ

B

Bt
` vg

B

Bx

˙

ψ « ´χ
B2ψ

Bx2
` kyUψ

NLSE solitons at small amplitudes, quasistationary ZFs at larger amplitudes

‚ The linear grow rate is maximized at q „ p1 ` k2yq
?
N{β. The equation of state

says that N „ Uβ. From here, one gets U „ βq2{p1 ` k2yq2.

Zhou et al. (2019) 14/24
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‚ So, let’s summarize: NLSE gives U „ βq2{p1`k2yq2, if U ă Uc2. If more turbulence
energy is available, then ZFs approach U „ Uc2 and dissipate the rest via the KHI.

‚ Thus, saturated ZFs typically have q2 „ 1 ` k2y and U „ Uc1 at this q:

U „ β{p1 ` k2yq ” U˚, q2 „ 1 ` k2y ” q2˚

‚ In the original units: assuming ky „ ρ´1
s , one has U „ cT {eBLn, so kyU „ ω˚.

Zhu and Dodin (2021) 15/24
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˚Last unexplored regime: ZF merging at U À Uc2 and q2 Á 1 ` k2y

x

‚ The iWKE is only marginally applicable to ZF
formation but can explain it qualitatively.

H “
kypβ ` U 2q

1 ` k2x ` k2y
` kyU, U «

N

2β
` const

k2x ! 1 ` k2y, q2
.
“ ´U 2

{U, ky “ const

H « C1

ˆ

k2x
2m

` V

˙

` C2, m
.
“

p1 ` k2yq2

2β2
, V

.
“

ˆ

q2

1 ` k2y
´ 1

˙

N

2

‚ If q2 ă 1 ` k2y, driftons reside near minima of V , so the system is stable.

‚ If q2 ą 1` k2y, driftons reside near maxima of V . The system can lower the energy
by bifurcating to a lower-q state, so it is unstable to ZF merging.

16/24
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‚ In the Terry–Horton model, two additional operators are introduced: pδ is responsible
for the primary instability, and pD models friction and viscosity.

Btw ` tφ,wu “ βByφ´ pDw

w “ p∇2
K ´ pa` ipδqφ, pδ “ δppkyq, pD “ 1 ´ β∇2

K

For this modified Terry–Horton model, see St-Onge (2017) . Various δpkyq can be used, depending on the physics of interest. 17/24
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‚ The linear primary waves are governed by drifton Schrödinger equation:

iBtw̃ “ pHw̃, pH “ ky pU ` kypβ ` pU 2
qr1 ` pk2x ` k2y ´ iδpkyqs

´1
´ i pD

‚ The lowest-order modes have the largest growth rates. They are localized˚ in
px, kxq, so the drifton Hamiltonian can be approximated with its Taylor expansion:

BtW “ ttHH,W uu ` rrHA,W ss, H « c0 ` c1x
2 ` c2k

2
x

˚DWs tend to be sheared away in (or propagate out from) regions of large velocity shear |U 1
|. 18/24
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‚ Since pH « c0 ` c1px
2 ` c2pk

2
x, a DW is just a quantum harmonic oscillator with

complex coefficients and the spectrum that satisfies εn “ p2n ` 1qϑ:

ˆ

´ϑ2
d2

dx2
` x2

˙

w̃ “ εw̃, w̃n „ Hn

ˆ

x
?
ϑ

˙

e´x2
{2ϑ

ϑ
.
“ ´

i
a

2p1 ` β{U 2
0q

1 ` k2y ´ iδ
, ε

.
“

2

kyU 2
0

„

ωTI ´ kyU0 ` iD0 ´
kypβ ` U 2

0q

1 ` k2y ´ iδ

ȷ

‚ Using U and q2
.
“ ´U 2{U from our results for the Hasegawa–Mima model, one

can calculate the growth rate explicitly. The predicted rate agrees with simulations.

γTI “ ´D0 ` Im

«

kypβ `U 2
0q ´ ikyU

2
0

a

p1 ` β{U 2
0q{2

1 ` k2y ´ iδ

ff

” γ
plinearq

primary ` ∆γpU 2

0q

‚ In summary, DW are localized near extrema of the zonal velocity U . Trapped
modes have γ “ γ0 ` ∆γpU 2q, so U 2 can affect primary instabilities.

Zhu et al. (2020)a 19/24
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γTI “ ´D0 ` Im

«

kypβ `U 2
0q ´ ikyU

2
0

a

p1 ` β{U 2
0q{2

1 ` k2y ´ iδ

ff

” γ
plinearq

primary ` ∆γpU 2

0q

‚ The tertiary instability can be viewed as the primary instability modified by ZFs.

- If γTI ă 0, turbulence is suppressed; ZFs survive, assuming D̂ acts only on DWs.

- If γTI ą 0, the system ends up in a turbulent state. ∆γ is the Dimits shift!

Zhu et al. (2020)b 20/24
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‚ We calculate the values of β that correspond to γ
plinearq

primary “ 0 and γTI “ 0 using

U 2
0 „ q2˚U˚. The difference between these values is the Dimits shift (green).

‚ Compared with related results from St-Onge (2017), denoted β˚
ZF, our model is

a better fit at both large and small δ. (We assume pδ “ δ0pky.)

Zhu et al. (2020)b 21/24
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‚ The KHI is subsumed under the main equations, but it is a different instability:

- KHI: delocalized modes, destabilized by U 2, does not rely on dissipation

- dissipative TI: localized modes, stabilized by U 2, relies on dissipation

22/24



MAS Executive Classroom 2
Wednesday, August 6, 11amBeyond the adiabatic approximation: Hasegawa–Wakatani model

‚ Next level of complexity: give up the assumption of adiabatic npφq, treat n as
an independent field. For example, Hasegawa–Wakatani model, with w “ ∇2φ´n:

Btw ` tφ,wu “ βByφ´ D̂w, Btn` tφ, nu “ αpφ̃´ ñq ´ βByφ´ D̂n

‚ The physics mostly remains the same, but ZF can dissipate. This leads to
predator–prey oscillations (PPO).

‚ Also, since DWs can exchange energy with U and with N , there are two types of
PPO, and analytic predictions are more difficult.˚

Zhu et al. (2020)a ˚ The secondary instability changes too, cf. Ivanov et al. (2020) .
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‚ Important things missed in earlier studies:

- Heuristic arguments are not enough, WKE must be derived from first principles.

- λ{L and U 2{β are not negligible, one must look beyond geometrical optics.

‚ Scalings for processes that are not directly determined by primary instabilities (PI)
and dissipation can be understood from the Hasegawa–Mima model.

‚ Adding dissipation introduces a new tertiary instability (basically, a modified PI)
that is more relevant than the commonly known Kelvin–Helmholtz instability.

‚ Dimits shift:

- Dissipation localizes the tertiary modes near the ZF-velocity extrema.

- Their growth rate can be made negative by U 2, leading to the Dimits shift.

- An analytic theory is developed within the Terry–Horton model.

- Two-fluid models exhibit additional effects, but the qualitative physics is similar.

24/24
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˚Weyl symbols for dynamo theory without scale separation

‚ A similar formalism applied to MHD leads to a revised theory of plasma dynamo:

Btv ` pv ¨ ∇qv

“ pb ¨ ∇qb ´ ∇P ` ν∇2v

Btb “ ∇ ˆ pv ˆ bq ` η∇2b

∇ ¨ v “ 0, ∇ ¨ b “ 0

iBtW “ H ‹ W ´ W ‹ H:
´ iτ´1

c W ` T

H “

ˆ

H`` H`´

H´` H´´

˙

H˘˘
ij “ δij

´

z̄¯
l ‹ kl ´ iν`k

2
¯

` i
ki
k2

‹ z̄¯
l,j ‹ kl

H˘¯
ij “ ´δijiν´k

2
´ iz̄˘

i,j ` i
ki
k2

‹ z̄˘
l,j ‹ kl

‚ EMF is a Hodge star of the integrated Elsässer Wigner matrix, E “ ‹
´
W´` dk.

‚ Mean-field equations for w̄˘ “ ∇ ˆ pv̄ ˘ b̄q yield the nonlocal EMF from first
principles, subsume known dynamo mechanisms a new one caused by xṽ ¨ j̃y.

Btw̄
˘

“ ´pk ˆ
␣“`

pkpk´2
ˆ w̄¯

˘

¨ pk
‰`

pkpk´2
ˆ w̄˘

˘(

´ pk2pν`w̄
˘

` ν´w̄
¯

q ` S˘

S˘
i “ ϵijk

ˆ
dk

p2πq3

´

klkj ‹W˘¯
kl ´ kl ‹W˘¯

kl ‹ kj

¯

Jin and Dodin (2025) 25/24
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˚Weyl symbols for quasilinear theory of wave–particle interactions

‚ Quasilinear theory of wave–particle interactions: write the QL term in the operator
form through the Green’s operator pG of LVE, then Weyl-expand this operator.

‚ This leads to a fully conservative equation for the “oscillation-center” distribution
F
.
“ f̄ ` Bp ¨ pΘ Bpf̄q captures both QL diffusion and ponderomotive forces:

Btf “ tH̄ ` H̃, fu

f̃ “ pGtH̃, f̄u

Btf̄ ´ tH̄, f̄u “ Bαp pDαβ
Bβf̄q

pDαβ
“ xpuα pGpuβy, uα “ Jαβ

BβH̃

BF

Bt
“ tH̄ ` Φ, F u `

B

Bp
¨

ˆ

DDD
BF

Bp

˙

Θ “
B

Bϑ

 
dω dk

kk: W̄H̃

2pω ´ k ¨ v ` ϑq

ˇ

ˇ

ˇ

ˇ

ϑ“0

Φ “
B

Bp
¨

 
dω dk

kW̄H̃

2pω ´ k ¨ vq

DDD “ π

ˆ
dk kk: W̄H̃pt,x,k ¨ v,k;pq

‚ Conserves nonresonant-wave action. Subsumes many results previously derived
ad hoc, including fluctuation theory and Balescu–Lenard collisions (not shown).

Dodin (2022); Dodin (2024) 26/24
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