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The formation and dynamics of spatially extended compositional domains in multicomponent lipid
membranes lie at the heart of many important biological and biophysical phenomena. While the ther-
modynamic basis for domain formation has been explored extensively in the past, domain growth in
the presence of hydrodynamic interactions both within the (effectively) two-dimensional membrane
and in the three-dimensional solvent in which the membrane is immersed has received little atten-
tion. In this work, we explore the role of hydrodynamic effects on spinodal decomposition kinetics
via continuum simulations of a convective Cahn—Hilliard equation for membrane composition cou-
pled to the Stokes equation. Our approach explicitly includes hydrodynamics both within the planar
membrane and in the three-dimensional solvent in the viscously dominated flow regime. Numeri-
cal simulations reveal that dynamical scaling breaks down for critical lipid mixtures due to distinct
coarsening mechanisms for elongated versus more isotropic compositional lipid domains. The break-
down in scaling should be readily observable in experiments on model membrane systems. © 2010
American Institute of Physics. [doi:10.1063/1.3518458]

I. INTRODUCTION neglected asymptotically close to the CP. In contrast, Haataja
has developed a theory, which predicts a novel scaling be-
havior for lipid transport coefficients near the CP due to hy-
drodynamic interactions for membranes immersed in a bulk
solvent.% This result has important ramifications for the dy-
namics of compositional domains in both in vivo and in vitro
membranes.

Once an immiscible fluid mixture is quenched below the
critical point, on the other hand, phase separation ensues.
During the phase separation process, compositional domains
emerge and grow with time 7; that is, the system coarsens. Im-
portantly, it is often found that a single time-dependent length
scale R(t) (such as the average domain size, first zero cross-
ing of the two-point correlation function, etc.) fully character-
izes the statistical properties of the coarsening system. More
specifically, if all lengths in the system are scaled by R(¢),
the configurations recorded at different times are asymptot-
ically indistinguishable in a statistical sense. This is called
dynamical scaling, and in the scaling regime R(¢) usually
obeys R ~ t# with B denoting the so-called growth exponent.
Moreover, in such scale-invariant systems, all characteristic
lengths will scale with the same exponent §. Finally, at the
critical composition, the two emerging phases have equal area
(volume) fractions in 2D (3D) and often form intercon-
nected morphologies, while off-critical compositions outside
the spinodal region usually lead to a droplet morphology at
late times. For a comprehensive review on coarsening phe-
nomena, see Ref. 7.

Now, experiments probing phase separation dynamics
in lipid membranes have painted a rather confusing picture.
)Electronic mail: mhaataja@princeton.edu Saeki et al.® investigated the domain growth kinetics in a

Lipid bilayer membranes are ubiquitous in mammalian
cells and facilitate the interaction between a cell and its
surroundings. Furthermore, lipid membranes are employed
in important biomedical applications, such as vehicles for
targeted drug delivery. Notably, membrane “microstructure”
(that is, local lipid and protein compositions, etc.) directly
controls the mechanical, physical, and biochemical properties
of the system.

At the mesoscale, lipid bilayer membranes can be re-
garded as effectively two-dimensional (2D) systems embed-
ded within a three-dimensional (3D) aqueous solvent. The
membrane may be compositionally homogeneous or hetero-
geneous, and structurally either solidlike (gel) or liquid, or
display coexistence between gel and liquid phases or multiple
liquid phases. Indeed, several studies employing model mem-
brane systems have provided a plethora of important insight
into both the structure and dynamics of compositional lipid
domains in lipid vesicles.'~

While the thermodynamic basis for compositional lipid
microdomain formation in synthetic membranes has been ex-
plored extensively in the past, the roles of membrane and exte-
rior fluid hydrodynamics on domain formation kinetics have
received relatively little attention, despite the fact that these
hydrodynamic interactions can strongly influence the kinet-
ics. A case in point is the asymptotic dynamic behavior of a
lipid membrane system in the vicinity of a critical point (CP).
Conventional wisdom predicts that hydrodynamics can be
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cell-sized liposome, and found that the average domain size
R increases with time ¢ as R ~ %3 for off-critical mixtures.
Yanagisawa et al.’ in turn studied the growth dynamics of
domains on ternary fluid vesicles. They found two types of
coarsening processes, namely, “normal” and “trapped” coars-
ening. In the former case, R ~ t*/3, while in the latter, the do-
main coarsening is suppressed beyond a critical domain size.
Interestingly, R ~ t>/3 scaling was reported for both critical
and off-critical lipid mixtures. Notably, the experimental ob-
servations from Refs. 8 and 9 do not agree as far as the coars-
ening kinetics are concerned.

On the other hand, computational studies of domain for-
mation dynamics in lipid membranes in contact with a sol-
vent do not agree on the coarsening kinetics either. Laradji
and Kumar'®!! investigated the dynamics of domain growth
in fluid vesicles at an off-critical composition using dissi-
pative particle dynamics (DPD) simulations. For spherical
vesicles with identical compositions for the two monolayers,
R ~ 193 19 while for spherical vesicles with asymmetric com-
position between the two monolayers the domain growth was
slower with R ~ %13 followed by R ~ %3 at late times.'!
Ramachandran et al.'?> in turn simulated spinodal decom-
position in both curved and planar membranes at the criti-
cal composition also using DPD simulations. For both cases,
R ~ t'2, More recently, Ramachandran et al.’® simulated
spinodal decomposition in a thin liquid film using DPD, both
in the presence and absence of a solvent. In the former case,
they found that R ~ ¢'/3, while in the latter case R ~ t'/2,
highlighting the importance of the solvent on coarsening ki-
netics. Interestingly, a very recent continuum study also ob-
tained R ~ t'/? for spinodal decomposition (SD) dynamics
in planar membranes coupled to a bulk solvent.'* In all, both
experimental and computational studies have painted a rather
confusing picture of the role of hydrodynamics on coarsening
kinetics in lipid membranes.

The goal of this paper is to clarify the effects of mem-
brane and solvent hydrodynamics on SD kinetics in planar
lipid bilayer membranes for critical lipid compositions. More
specifically, by employing a continuum approach, we demon-
strate that dynamical scaling is absent in SD kinetics in lipid
bilayer membranes due to the presence of hydrodynamic in-
teractions. While such scaling violations have been observed
previously in strictly two-dimensional simulations of phase-
separating binary fluids,”>~!'” we have generalized these 2D
simulation results to fully 3D viscously dominated flows, in-
cluding both SD kinetics within the membrane and solvent-
mediated interactions. The breakdown in scaling should be
readily observable in experiments on model membrane sys-
tems.

The rest of this paper is organized as follows. In Sec. II
we first introduce the continuum approach employed in this
work, while Sec. III contains both a discussion of the numer-
ical scheme adopted in the simulations and a presentation of
simulation results. Finally, a discussion and concluding re-
marks can be found in Sec. I'V.

Il. THEORETICAL APPROACH

For simplicity, we assume that the membrane comprises
of two lipid types, A and B, with local concentrations c4 and
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cp, respectively. Now, within the membrane, the order param-
eter (OP) corresponding to the dimensionless concentration
field is defined via W = (ca(r, t) — cp(r, 1)) /2¢, where ¢ de-
notes the critical composition. The OP evolves according to

the convective Cahn-Hilliard equation'* '8
oy
=7 TV W =20V, )]

where A denotes the compositional mobility, py = §F /8y
denotes the chemical potential with a phenomenological free-
energy given by'®

_ 1 5 wZ w4
F_/dr[z(vw) ‘7*7] @)

and u(r, t) denotes the local velocity field within the mem-
brane. Note that this choice of F implies that the interface
width (or, equivalently, the mean-field correlation length &)
has unit thickness; that is, all lengths are measured in units
of £. In principle, a stochastic noise term can be added to
Eq. (1) to account for the presence of thermal fluctuations.
In this work, we have ignored it, but will revisit the issue in
Sec. IV. We have also assumed that the bilayer is symmet-
ric with respect to lipid compositions and that the composi-
tions are coupled in the two leaflets such that they become
spatially synchronized, as has been observed in experiments.’
Furthermore, to clearly identify the role of hydrodynamic ef-
fects on coarsening, we have ignored couplings between the
local composition and membrane curvature, and assume that
the membrane remains perfectly planar.

Turning now to membrane and solvent hydrodynamics,
we first estimate that the Reynolds number Re characterizing
the flow fields within the membrane and solvent is given by
Re = uR/v ~ 107 based on experimental data from Refs. 8
and 9. Here, u ~ 1076 m/s, R ~ 10 5mand v ~ 107° m2/s
denote the characteristic velocity, domain size, and kinematic
viscosity of the solvent, respectively. The membrane flow
field u(r, ¢) is thus dominated by viscosity in this regime and
satisfies the Stokes equation,

nuVu—Vp+W-—F=0, 3)
with the incompressibility condition
V.u=0, )

where 1), denotes the (dynamic) lipid membrane viscosity,
assumed constant in this work. Here, W(r, 1) = —¢Vu,, ac-
counts for the impact of compositional variations in the mem-
brane stress tensor, while the effective membrane pressure p
is employed to enforce the incompressibility condition. In the
limit where compositional interfaces are sharp, W incorpo-
rates line tension forces acting normal to the interfaces, and
which locally drive fluid flow within the membrane. Finally,
the effective force F in Eq. (3) arises from the coupling be-
tween the membrane and the solvent flow fields via the no-slip
boundary condition.'®

Now, it can be shown that velocity field is given in
Fourier representation by

iq,n=7-W, 5)
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where W denotes the Fourier transform of the membrane

compositional force W, and where the components of the
. = .

modified Oseen tensor T are given by’

1 qa9p
2 Sap — 2
nmq* + 2nsq q

1 qaqﬁ>
— |\ b — —— ). (6)
ans(@lu +2) ( N

Furthermore, g = (qf + qyz,)l/ 2, ns denotes the viscosity of
the solvent, and €y = 1y /ns denotes the so-called hydro-
dynamic length.?! The significance of £ is that the mem-
brane hydrodynamics is effectively 2D (3D) on spatial scales
smaller than (greater than) £y. In the quantitative part of
this study, we will focus on three cases with regard to £y:
Ly — 0o, £y — 0, and finite £5. These choices correspond
to cases where the hydrodynamic effects are confined within
the membrane alone, dominated by the solvent, or shared be-
tween both the membrane and the solvent, respectively. It
should be noted that the £y = oo case, which corresponds
to a strictly 2D system decoupled from the solvent, has been
theoretically studied extensively in the past.'®!7-22=3! Finally,
in the simulations detailed below, we systematically vary the
magnitudes of the viscosities in order to explore the role of
the (nominal) Peclét number Pe ~ min[& zr;;,' Ao L nglkg 1
in the coarsening kinetics. In particular, Pe > 1 implies
that the advective term dominates over the nonlinear dif-
fusion one in Eq. (1), while for Pe <« 1 the opposite is
true.

Taﬁ (‘1) =

lll. NUMERICAL SIMULATIONS

Before turning to the description of the results from
numerical simulations, we first present the numerical
scheme we have employed. The numerical scheme is
then applied to elucidate SD kinetics of lipid bilayer
membranes at the critical composition in the presence of hy-
drodynamics.

A. Numerical scheme

A splitting scheme (Trotter’s formula)*> was adopted to
update the order parameter field i via two steps. In the first
step, the order parameter is updated by considering only the
effect of the convective term,

Wuy)ipr,j — (Fuy)i—yj
2Ax

W:j = 1ﬁi,j - At|:

+ Wy j+1 — (vfuy)i,j—l:| ’ o

2Ay

where u = [u,, u,] was obtained by the inverse Fourier trans-
formation of :

q}vax — 4xqy Wv

(@) = , ®)
O e+ 2nsg?
i W, — g, W
i,(q) = L2 T ©)

nmq* +2nsq®
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Here, W is the Fourier transform of the discretized W
= [W,, W,

Mit1,j — Hi—1,j
We=—¢Y; i ———, 10
Vi (10)

i j+1 — i j-1
W, = —¢; i —F——— 11
»= Vg (11)

Mij = —Yij+ W,?,j — Wi + Yo + Vi

+ Vi1 — 41/ (Ax). (12)

Next, ¥;*; is updated in time based on the nonlinear diffu-
sion part using the standard forward Euler scheme to complete
one full numerical integration step,

Vij =7+ Atho(uiyy j + iy ; + 145 0
+uf oy = A ) /(Ax), (13)

where 1} ; is obtained from Eq. (12) by replacing v ;
with ;. The computational domain is L x L with periodic
boundary conditions and box size L = 1024. The initial com-
position was chosen to be homogeneous with small random
fluctuations drawn from a Gaussian distribution. In this work,
Ao = 1, and the dimensionless grid spacing Ax = Ay =1
and time step At = 0.005 were employed.

To verify the accuracy of the numerical scheme, we have
numerically extracted the relaxation times 7, of small ampli-
tude, sinusoidal capillary wave fluctuations with wave number
q around a planar compositional interface. In this case, it can

be shown that>? in the absence of inertia

4

T, = aild for Iy — o0
oq

(14)

2nns

‘L'q = D for lH — O’
aq

where o denotes the surface tension; for the free energy in
Eq. (2), 0 = 2+/2/3. Numerically extracted T, Versus g are
displayed in Fig. 1 for £5 = 0 and co. It can be seen that the

5
o nv=0,ns=0.01
—— Analytical result for £ =0
4 O v =0.1,7ns=0
— — Analytical result for {5 = oo

InT,

-3 -2.5 -2 -1.5

FIG. 1. Relaxation time 7, of sinusoidal interface perturbation vs g extracted
from simulations. Squares and circles correspond to £y = 0 and £y = oo,
respectively, while solid and dashed lines correspond to the analytical pre-
dictions from Eqs. (14). Note that the simulation results are in very good
agreement with analytical predictions.
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FIG. 2. Representative membrane concentration map and instantaneous sol-
vent flow field. Dark and light colors represent the ¢ =1 and ¢ = —1
phases, respectively. The size and orientation of the cones reflect the mag-
nitude and direction of the 3D solvent velocity field, respectively.

analytical predictions are in very good agreement with simu-
lation results.

Finally, the simulation geometry is shown in Fig. 2,
which displays a representative membrane concentration map
during SD and the associated 3D solvent flow field. In subse-
quent figures displaying concentration maps, membrane and
solvent flow fields are omitted for clarity.
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B. Spinodal decomposition with hydrodynamics. I.
Qualitative analysis

Let us now turn to a qualitative discussion of hydrody-
namic flow effects on spinodal decomposition kinetics in lipid
membranes. More specifically, in this section we will focus on
two regimes, namely £y > 0 and £y = 0. Both cases repre-
sent a 2D membrane coupled to 3D solvent flow fields. In the
first case, both membrane and solvent flow fields contribute
to viscous dissipation, while in the second case, viscous dis-
sipation is completely dominated by the surrounding solvent.

We begin by examining the role of finite hydrodynamic
length. More specifically, we have set £z = 10 by choos-
ing representative parameters values (1), ns) = (1, 0.1) and
(0.1, 0.01), corresponding to Pe ~ 1 and 10, respectively.
Resulting concentration maps are shown in Fig. 3. Initially,
regardless of the magnitude of 1), emerging domains are
elongated and bi-continuous, and become more isotropic as
the line tension-driven coarsening proceeds. Interestingly, at
low viscosities corresponding to Pe 2 10, there is an appar-
ent decoupling between the coarsening dynamics of elongated
and circular domains. For example, a comparison between
panels (e) and (f) in Fig. 3 reveals dramatic changes in both
morphologies and sizes of some of the elongated domains,
while more isotropic ones embedded within these domains
have only been advected by the local flow fields with little
change in shape or size. Similar results were obtained for
Pe 2 10 in the case where hydrodynamic effects are com-
pletely dominated by the surrounding solvent; thatis, £y = 0.
Representative parameter values were set to (7, ns) = (0,
0.1) and (0, 0.01), corresponding to Pe ~ 10 and 100, respec-
tively. The corresponding concentration maps are displayed
in Fig 4. Again, a comparison between panels (e) and (f) in

FIG. 3. Concentration maps during spinodal decomposition with £y = 10. (a)-(c) (nup, ns) = (1, 0.1). (d)—(f) (nm, ns) = (0.1, 0.01). Time increases from
left to right with r = 55, 405, and 700. Note the increase in the overall coarsening kinetics as the viscosities are decreased. Also, a comparison between panels
(e) and (f) reveals dramatic changes in the morphologies and sizes of some of the elongated domains, while more isotropic ones have changed very little in

shape or size. This implies that dynamical scaling breaks down.
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(e)

FIG. 4. Concentration maps during spinodal decomposition with £ = 0. (a)—(c) (npm, ns) = (0, 0.1). (d)—~() (nm, ns) = (0, 0.01). Time increases from left to
right with r = 55, 405, and 700. Again, note the increase in the coarsening rate as the viscosities are decreased. Also, again note the breakdown of dynamical
scaling at low viscosities, as more elongated domains undergo rapid morphology and size changes, while more isotropic ones change very little in shape or size.

Fig. 4 reveals dramatic changes in the morphologies and sizes
of some of the elongated domains, while more isotropic ones
have changed very little in shape or size.

These observations suggest that a single length scale can-
not adequately represent the statistical properties of the con-
centration maps for different times; in other words, dynamical
scaling breaks down. Such a breakdown in dynamical scaling
has been previously observed in purely 2D phase-separating
fluid systems,'>"!7 and it is interesting that scaling is not re-
covered even when 3D solvent flow fields are included. As
will be discussed in more detail below, the significance of
this result is that different quantitative measures of the domain
morphology employed to characterize the coarsening kinetics
in the same system will yield widely varying, effective coars-
ening rates. Curiously, breakdown of dynamical scaling has
not been reported in DPD studies of phase-separating lipid
membranes'? or thin liquid films."3

For even smaller viscosities (data not shown), we have
observed small circular domains nucleate and grow within
other droplets. This phenomena is called secondary phase
separation due to the so-called interface quench effect.'> In
this case, domains form rapidly due to hydrodynamic flow
effects, but the process takes place too quickly for the order
parameter to equilibrate; thus, a secondary phase separation
commences. % !7-31

C. Spinodal decomposition with hydrodynamics. II.
Quantitative analysis

Next, in order to quantify the breakdown of dynami-
cal scaling, we have computed the temporal evolution of
the average domain size and the (effective) growth expo-
nent. The average domain size R in this study is defined by

R(t) = Ay/L4(t), where A, is the total area of the ¥ =1
phase (Ay = L?/2 at the critical composition), and £,(t)
is the time-dependent, total interface length between the
compositional domains. The data for R(z) are shown in
Figs. 5(a)-5(c). We define an effective growth exponent Be
in turn via Beg(t) = In[R(r + At)/R(t)]/ In[(t + At)/t], and
the corresponding data is shown in Figs. 5(d)-5(f).

The data in Figs. 5(a)-5(c) quantitatively confirm our
observations that domain coarsening proceeds faster as the
viscosity decreases. With regard to the effective coarsening
exponent Beg(t), inspection of Figs. 5(d)-5(f) reveals that
low viscosities corresponding to Pe = 10 are associated with
large initial Beg values, with a rapid decrease at later times
regardless of the magnitude of £5. The reason for this is the
rapid coarsening of elongated domains, as will be discussed
in more detail below. For intermediate viscosity values corre-
sponding to Pe ~ 1 and £y = 0o, we observe a rather slow
decrease from B ~ 0.7 to 0.3 as the coarsening proceeds.
These results are consistent with previous simulations of spin-
odal decomposition in 2D binary fluids using both Langevin
equation'>!” and lattice Boltzmann'® approaches.

On the other hand, at intermediate viscosity values cor-
responding to Pe ~ 1 for £z = 10, we observe an apparent
scaling regime with Beg &~ 0.5, as shown in Fig. 5(e). Interest-
ingly, a similar scaling exponent was also reported in Ref. 12
based on DPD simulations. However, a closer examination of
the data reveals a very slow decrease in B, from Beg =~ 0.5 at
early times to B & 0.45 at the end of the simulation. In other
words, this is not a true scaling regime. This observation is in
rather stark contrast with very recent simulations of a related
continuum model by Camley and Brown,'* whoclaimed that
scaling is observed at finite £y values with B = 0.5. In the
case of £y = 0, no apparent scaling regimes are discernible,
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FIG. 5. Comparison of R vs ¢ [(a)—(c)] and Besr vs t [(d)—(f)] for different £f. From left to right, £ = oo, 10, and 0, respectively. In all cases, decreasing
the viscosities implies faster domain growth. Note the emergence of an apparent scaling regime for £ = 10 at intermediate viscosity values with Begr =~ 0.5,

shown in panel (e), solid line.

apart from the high-viscosity case which displays behavior
consistent with standard Ostwald ripening. Not surprisingly,
increasing the viscosity leads to the standard Ostwald ripen-
ing scaling regime fBegr & 1/3 regardless of the value of £y
over the range of simulation times explored in this study.

In order to quantitatively analyze the breakdown of dy-
namical scaling, we have investigated the coarsening behav-
ior of domains with different morphologies, ranging from
elongated to more isotropic. To this end, we first identified all
domains in the system, defined as a set of connected, near-
est neighbor lattice sites. Then, a dimensionless geometric
quantity, denoted by y, was computed for each domain. Here,
y =7 A% [r’d A, with A denoting the area of the domain;
the integration is with respect to the center of mass of the
domain. Based on the value of y, every domain is catego-
rized either as elongated (y > 3/4) or circular (y < 3/4). For
comparison, y = 1/2, 5/8, or5/6 for a perfect circle, ellipse
with a = 2b, or ellipse with a = 3b, respectively. We have
verfied that the results of the quantitative analysis presented
below are not sensitive to the specific choice of the threshold
value for y < 1.

Next, we extracted the average domain sizes
Re"e and R by employing the definitions R®°"(t)

_ n elong n elong i _ m i

=i A T/ Xiat RE(r) = 37, A
/2 L5, where Aflong (AS"), and e (£5"¢) denote
the area and interface length of the ith elongated (jth
circular) domain at time ¢, and the summations run over all

elongated and circular domains, respectively. The effective

and

growth exponents BSe" and B corresponding to the

different domain shapes in turn were obtained from R¢°"2
and Re"™ using the same procedure as in the case of PBeg.
The data is displayed in Figs. 6-8. In the effectively 2D
case ({yg = oo; Fig. 6), at intermediate values of mem-
brane viscosity corresponding to Pe~1 (ny =1 in
Fig. 6(b)), elongated domains coarsen rapidly with
B A 0.7 initially and B5"® & 0.5 at the end of the
simulation, while circular ones coarsen more slowly with

circ

< which also decreases in time. The high initial values of

I¢ result from coalescence events facilitated by the flow
field. For ny = 0.1 corresponding to Pe ~ 10, on the other
hand, both 5™ and S quickly decrease towards ~0.25,
as shown in Fig. 6(d).

In the €5 = 10 case (Fig. 7), on the other hand, at in-
termediate values of 1y = 1 and ng = 0.1, corresponding to
Pe ~ 1 shown in Fig. 7(b), S5 ~ 0.5 for the duration of
the simulation, while B¢ decreases towards 1/3. Notably,
the overall R(¢) follows very closely that corresponding to
the elongated shapes. This implies that the number of circu-
lar domains relative to the elongated ones is small, consis-
tent with visual observations of configurations displayed in
Fig. 3. The scaling we observe is only apparent, however, as
domains with different shapes coarsen with different rates. As
the viscosities are decreased to 3 = 0.1 and ng = 0.01 cor-
responding to Pe ~ 10, we find no apparent scaling regime,
as both 5" and S quickly decrease towards 0.3 (see
Fig. 7(d)). In this case, the overall R(¢) deviates significantly

Downloaded 15 Dec 2010 to 128.112.35.162. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



235101-7 Spinodal decomposition in lipid membranes
50
o Elongated
30 }|—Overall
= Circular
20
& 10
5
3 q
10 100 1,000
t
(a)
50

30
20

5
o Elongated
3 — Overall
* Circular
10 100 1,000
t

J. Chem. Phys. 133, 235101 (2010)

o Elongated
— Overall
= Circular

0.6
S
)
Q0.4
%"‘&
0.2 xm
0
0 500 1000
t
(b)
1
o Elongated
—Overall
0.8 % Circular

FIG. 6. Comparison of domain growth kinetics for elongated vs circular domains for £ = 00. (a), (¢) R(?). (b), (d) Befe(?). Top panels: ny = 1. Bottom panels:
nm = 0.1.In both cases, the average elongated domain size is larger than the average circular domain size. We note that the discontinuities in the B¢ vs ¢ data
for the circular domains result from circular domain coalescence events as well as from elongated domains becoming circular ones within our categorization

scheme. Notice the absence of any scaling regimes.

from that corresponding to the elongated shapes. This implies
that the number of circular domains relative to the elongated
ones is large, again consistent with visual observations of con-
figurations displayed in Fig. 3.

Finally, in the £5 = 0 case (Fig. 8), at an intermedi-
ate value of ng = 0.1 corresponding to Pe ~ 10, shown in
Fig. 8(b), B ~ 0.6 initially and A5 ~ 0.4 at the end of
the simulation, while the circular ones coarsen more slowly
with g}tfc which decreases in time towards 0.3. Furthermore,
the overall R(¢) follows very closely that corresponding to
the elongated shapes. As in the previous two cases, at lower
values of ng corresponding to Pe ~ 100 we find no appar-
ent scaling regime; instead ,Bg?"g and ﬂggc quickly decrease
towards 0.2, as shown in Fig. 8(d).

To summarize, regardless of the specific value of ¢y,
at high viscosities corresponding to Pe < 1, both elongated
and circular domains coarsen with S5 = B & 0.3, in ac-
cordance with diffusion-mediated Ostwald ripening. On the
other hand, for intermediate viscosity values corresponding to
Pe < 10, elongated domains initially coarsen with an effec-

elong

tive exponent B, ° ~ 0.6 which smoothly decreases in time,
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while B¢ ~ 0.3. Finally, at lower viscosities corresponding

to Pe > 10, both S5

circ

and B

rapidly decrease towards 0.3.

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have studied hydrodynamic flow ef-
fects on spinodal decomposition kinetics in lipid bilayer
membranes. Our simulation results conclusively demonstrate
the breakdown of dynamical scaling in the SD kinetics dur-
ing phase separation in lipid bilayers in the viscously dom-
inated flow regime at high Peclét numbers, where convec-
tive transport dominates over diffusive one. It is precisely
this Pe >> 1 regime which is relevant for lipid microdomains
on the scale of ~ 107 m or greater. Indeed, following the
arguments in Ref. 17, we estimate that the effective Peclét
number Pe*, obtained from Pe by replacing the correlation
length & with the characteristic domain size R, is given by ~
I'R/(4mkgT), where I' ~ 1 pN denotes the line tension of a
lipid microdomain boundary.* For a typical domain size R ~
107> m, we obtain Pe* ~ 10° at room temperature. Thus, the
breakdown of dynamical scaling due to hydrodynamic effects
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should be readily observable in experiments employing model
membrane systems. The breakdown of dynamical scaling re-
ported here has been previously observed in strictly 2D sim-
ulations of phase-separating binary fluids.'>!%3 In the case
of lipid bilayers embedded within a 3D solvent, we demon-
strated that the growth mechanisms and effective exponents
are different for elongated versus circular domains, leading to
the absence of dynamical scaling. With regard to circular do-
mains, they are simply passively advected by the membrane
flow field and initially coarsen via coalescence events, while
elongated domains coarsen rapidly as driven by flow fields
generated by large curvature variations along compositional
interfaces. Furthermore, the values of the effective coarsen-
ing exponents depend on both membrane and solvent vis-
cosities. Interestingly, for some viscosity values correspond-
ing to Pe ~ 1, an apparent scaling regime was found in
the presence of solvent, for which the effective coarsen-
ing exponent PBer = 0.5. Such effective coarsening expo-
nents have also been reported by Kumar et al.'> in a DPD
simulation study and by Camley and Brown,'* who em-
ployed a similar continuum model to the one presented
here.

As in the recent DPD simulation study of phase separa-
tion in thin liquid films by Ramachandran et al.,'* we find
that the absence of the solvent quantitatively alters the SD

kinetics. More specifically, upon removing the solvent, the
coarsening rate increases relative to the fully 3D case at fixed
membrane viscosity, and this is reflected in larger effective
coarsening exponents. The values of the effective coarsening
exponents we observe, however, are significantly larger than
those reported in Ref. 13. This difference can be attributed to
the dominance of the Brownian coagulation mechanism of the
domains observed in the DPD simulations versus the large-
scale shape changes corresponding to the elongated domains
found in our simulations. However, we expect that large-scale
DPD simulations (or other particle-based methods, for that
matter) should be able to probe the processes leading to the
breakdown of dynamical scaling at the critical composition,
especially in the Re < 1 and Pe > 1 limit.

With regard to off-critical compositions, additional simu-
lations we have carried out indicate that circular domains ini-
tially coarsen rapidly in the case of intermediate values of the
viscosity and for all values of £y investigated. More specifi-
cally, BSI¢ 2 0.6 initially and B ~ 0.3 at later times, with
the decay rate of ,Bg}? in time determined by the magnitude
of the viscosity. Thus, depending on the observation window
and viscosities, a broad range of effective exponents can be
extracted. These observations may in part explain the vari-
ance in the experimentally extracted exponents reported in
the literature.®® Once a droplet morphology is attained after
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these transients, however, advective transport contributes very
little as far as domain growth is concerned. In the absence
of thermal fluctuations, the domains asymptotically coarsen
with R(t) ~ t'/3 due to Ostwald ripening, regardless of the
value of £y. The presence of thermal fluctuations, on the
other hand, in addition to making the compositional interfaces
more diffuse, introduces a distinct coarsening mechanism. In
particular,droplets of the minority phase diffuse around due
to thermal fluctuations and coalesce upon impingement; that
is, the Brownian coagulation mechanism eventually domi-
nates. As discussed in Ref. 13, this process leads to R(?)
~ 12 when R « €y, and R(t) ~t'/> when R > £y. In
contrast to systems at critical composition, we expect that
dynamic scaling in off-critical systems is established asymp-
totically regardless of the value of £4.

In summary, we have demonstrated that the presence of
membrane and solvent hydrodynamic flow fields dramatically
affects spinodal decomposition kinetics in lipid bilayer mem-
branes at the critical composition. In particular, we have un-
equivocally shown that dynamical scaling is absent in such
systems in the viscously dominated flow regime at large
Peclét numbers. Currently, we are investigating the roles of
composition-dependent viscosity and fluid inertia on coarsen-
ing kinetics in lipid bilayer membranes, and hope to report on
this in the near future.
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