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Abstract—Circuit models for multiphase coupled inductors
are summarized, compared, and unified. Multiwinding magnetic
structures are classified into parallel-coupled structures and
series-coupled structures. For parallel-coupled structures used for
multiphase inductors, the relationships between a) inductance-
matrix models, b) extended cantilever models, c) magnetic-circuit
models, d) multiwinding transformer models, e) gyrator-capacitor
models, and f) inductance-dual models are examined and dis-
cussed. These models represent identical physical relationships in
the multiphase coupled inductors, but emphasize different phys-
ical aspects and offer distinct design insights. The circuit duality
between the series-coupled structure and the parallel-coupled
structure is explored. Design equations for interleaved multiphase
buck converters based on these models are streamlined and
summarized, and a simplified equation showing the relationships
between current ripple with and without coupling is presented.
The models and design equations are verified through theoretical
derivation, SPICE simulation, and experimental measurements.

Index Terms—lumped circuit model, coupled inductor, mul-
tiphase buck converter, magnetic-circuit model, multi-winding
transformer, interphase transformer, inductance-dual model.

I. INTRODUCTION

MULTIPHASE coupled inductors are widely used in
many power electronics applications [1]–[20]. Partic-

ularly in interleaved multiphase PWM converters, they can
improve the efficiency, enhance the functionality, minimize
the energy storage, reduce the passive component size, avoid
saturation, and improve the transient response. Designing
high performance power converters with multiphase coupled
inductors requires advanced models and tools.

Models for multiphase coupled inductors can be classified
into two categories: 1) Math-based models focus on the mathe-
matical coupling relationships between windings. Math-based
models are derived based on the inductance matrix, reluctance
matrix, or permeance matrix. Information about the core
geometry, material properties, and winding structure is not
explicitly included. Math-based models can be represented by
a few convenient circuit models whose element values may not
have explicit physical meanings, such as the classic T model, π
model, star model, delta model, and extended cantilever model
[21]–[28]. 2) Physics-based models represent the physical
geometry of the magnetic structure more directly. Each portion
of the magnetic structure is represented by a lumped circuit
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Fig. 1. Two major categories of multiwinding magnetic structures: 1) series-
coupled structure; and 2) parallel-coupled structure.
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Fig. 2. Symbols and equations for: 1) ideal voltage equalizing transformer;
and 2) ideal current-equalizing transformer [29]. With infinite core perme-
ability and negligible leakage, a series-coupled structure can be modeled as
an ideal voltage equalizing transformer, and a parallel-coupled structure can
be modeled as an ideal current-equalizing transformer. For the ideal current-
equalizing transformer, we show the core topology with dashed lines, and
label winding polarity with arrows rather than dots, indicating the direction
of current that is equal in the corresponding current equation, just as the dots
indicate the direction of voltage that is equal in the corresponding voltage
equation for the voltage equalizing transformer.

element, and many lumped circuit elements are combined into
a complete circuit. The reluctance circuit model, the gyrator-
capacitor model, the inductance-dual model, and the modular
multi-layer model are physics-based models [30]–[39]. Finite-
element models are also physics-based models.

In their basic, linear form, all models discussed in this
paper are equivalent. However, different models offer different
design insights. Math-based models are well suited to theoret-
ical analysis of power converters, especially if the magnetic
components are already designed. Physics-based models offer
the oppportunity for natural extensions to capture core loss,
saturation, and the details of the flux distribution in the
core. Designers should choose an appropriate model based on
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the information that is needed in the design process. Often,
moving from math-based models to physics-based models can
give experienced circuit designers useful insight on circuit
operation that is harder to get from math-based models.

Fig. 1 shows two major categories of multiwinding mag-
netic structures: 1) Series-coupled structures, in which the
flux paths of multiple windings are configured in series; 2)
Parallel-coupled structures, in which the flux paths of multiple
windings are configured in parallel. Fig. 2 shows their circuit
symbols. With zero leakage flux, the series-coupled structure
forces the magnetic flux Φ of all windings to be the same,
leading to a bonded voltage relationship across windings. With
infinite permeability, the parallel-coupled structure forces the
magneto-motive-force (MMF) of all windings to be the same,
leading to a bonded current relationship across windings. The
series-coupled structure functions as an ideal voltage equaliz-
ing transformer in which N1i1 + N2i2 + ... + NM iM = 0,
and v1

N1
= v2

N2
= ... = vM

NM
; the parallel-coupled structure

functions as an ideal current-equalizing transformer in which
N1i1 = N2i2 = ... = NM iM , and v1

N1
+ v2

N2
+ ...+ vM

NM
= 0.

The goal of this paper is to investigate theoretical frame-
works that are most practical for modeling sophisticated
coupled magnetic structures and their application in multi-
phase PWM converters. The series-coupled structure is well
studied in the literature [26]–[28], [40]–[47]. Its mathematical
symbol, an ideal voltage equalizing transformer, is com-
monly supported by commercial SPICE simulation platforms.
The parallel-coupled structure is less commonly found in
power electronics applications. Moreover, ideal multi-winding
current-equalizing transformers are not well supported in
mainstream SPICE simulation platforms. A majority of this
paper focuses on models for parallel-coupled structures. We
summarize options for model structure and show how to
use these models to analyze and simulate buck converters
with multiphase coupled inductors, including developing a
simplified equation showing the relationships between current
ripple for interleaved multiphase buck converters with and
without coupling.

The remainder of this paper is organized as follows: Section
II introduces general models for multiwinding structures.
Section III simplifies these models for idealized multiwinding
coupled inductors. Section IV presents models for ladder-core
coupled inductors and discusses the relationship between this
model and a ladder model for a layered multiwinding trans-
former. Section V unifies these models and develops calcula-
tions to convert parameters between them. Section VI applies
the models to idealized coupled inductors in multiphase buck
converters and provides design guidelines. Section VII verifies
these models, and presents simulation and experimental results
of a multiphase coupled inductor buck converter. After Section
VIII concludes the paper, appendices provide background on
effective inductance parameters, sometimes used to describe
circuit operation, and on extracting model parameters from
measurements.

II. GENERALIZED MULTIWINDING STRUCTURES

The voltage and current of an arbitrary multiphase coupled
inductor is described by an inductance matrix L:

v1

v2

...
vM


︸ ︷︷ ︸

V

=


L11 L12 · · · L1M

L21 L22 · · · L2M

...
...

. . .
...

LM1 LM2 · · · LMM


︸ ︷︷ ︸

L


di1
dt
di2
dt
...

diM
dt


︸ ︷︷ ︸

dI
dt

. (1)

Here V and I are the voltage and current of the M windings.
The inductance matrix is a symmetric matrix with positive
and negative element values which are the self and mutual in-
ductances. It describes the mathematical coupling relationship
between windings and is applicable to all linear multiwinding
coupled magnetics, neglecting losses. The element values
of this matrix can be identified by physical modeling such
as finite-element analysis or by experimental measurements.
Fig. 3 shows an example four-winding magnetic structure with
a combination of series, parallel, and air-gap configurations.
Fig. 4 shows the inductance-matrix model of this example
[21]–[24]. Many SPICE simulation platforms, e.g., PSIM,
LTSpice and Simplis, support the use of the inductance-matrix
model. A similar model which decouples the mutual coupling
relationships is the extended cantilver model [26] as shown
in Fig. 5. In an extended cantilever model, all elements are
non-coupled inductors and ideal transformers.

Both the inductance-matrix model and the extended can-
tilever model are math-based models. One drawback of math-
based models is that the geometry and material property infor-
mation is not explicitly shown in the model. Limited insight
on magnetic structure design is offered. Physics-based models
can offer more direct insight on the relationship between the
physical structure and the model, and are considered next.

The magnetic-circuit model (reluctance circuit model) [21]–
[24] as shown in Fig. 6 is one of the most widely used physics-
based models. Each portion of the magnetic core is modeled
as a reluctance. Each winding is modeled as an MMF source
driving the reluctance circuit as a voltage source. The through-
variable is the magnetic flux Φ, and the across variable is the
MMF, F. The magnetic-circuit model is a static model.

One limitation of the magnetic-circuit model is that it
is cumbersome to simulate in SPICE. In a SPICE model,
the magnetic circuit is constructed using across and through
variables of current and voltage to represent MMF and flux.
To model the interaction between this magnetic circuit and the
electric circuit connected to the windings, on must consider
that the current is linearly related to MMF (F), and the voltage
to the derivative of flux (dΦ/dt). Added circuits are needed
to implement the linear scaling and time-derivative/integral
relationships which are critical in dynamic simulations [39].

The gyrator-capacitor model differs from the magnetic-
circuit model by replacing the through variable Φ with its
time-derivative Φ̇ = dΦ/dt, replacing the reluctances with ca-
pacitors whose capacitance equal to the permeance P = 1/R,
and replacing the MMF sources with gyrators which convert
current into voltage [31], [32]. Fig. 7 shows an example
gyrator-capacitor model derived from the magnetic-circuit
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Fig. 3. An example four-winding magnetic structure with a combination of
series, parallel, and air-gap configurations.
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Fig. 4. Inductance-matrix model of the magnetic structure in Fig. 3.
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Fig. 5. Extended cantilever model of the magnetic structure in Fig. 3.

model in Fig. 6. The two lumped circuit models share the
same network structure but have different component values.
In the gyrator-capacitor model, the through variable has units
of V, and the across variable has units of A.

It is sometimes beneficial to apply topological dual-
ity [48]–[51] to the gyrator-capacitor model and create an
inductance-dual model [33]–[38], as illustrated in Fig. 8. In the
inductance-dual model, the elements representing the magnetic
core sections are inductors with inductance values equal to
the permeance values P = 1/R, in units of henry (H). The
through variable is current, and the across variable is voltage.
The terminals of the model are ideal transformers with turns
ratios equal to the physical turns of the windings.

All models represent the same math and physics when
applied in the linear forms presented in this section. However,
they all have strengths and weakness, as listed in Table I, and
as further developed in the remainder of the paper.
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Fig. 6. Magnetic-circuit model of the magnetic structure in Fig. 3.
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Fig. 7. Gyrator-capacitor model of the magnetic structure in Fig. 3.
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Fig. 8. Inductance-dual model of the magnetic structure in Fig. 3.

III. IDEALIZED MULTIPHASE COUPLED INDUCTORS

In this section, we apply the general modeling approaches
discussed in Section II to the idealized multiwinding coupled
inductor structure shown in Fig. 9, with M outer legs and
one leg in the center. This is a parallel-coupled multiwinding
structure with a symmetric geometry. Each of the outer legs is
encircled by an N -turn winding. High permeability magnetic
materials are used, and a gap is used in the center leg to control
the inductance and avoid saturation with balanced dc currents.
Optional small gaps are sometimes used in the outer legs to
avoid saturation with small imbalances in the dc currents.

Fig. 10 shows the magnetic-circuit model of this parallel
structure. The model comprises M outer leg reluctances RL,
and one center leg reluctance RC . Each outer leg is driven
by an MMF source F = Ni. Fig. 11 shows the gyrator-
capacitor model of this structure, following the same changes
in variables as with Figs. 6 and 7.
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TABLE I
GENERAL ADVANTAGES AND DISADVANTAGES OF MODEL TYPES

Advantages Disadvantages

Inductance-Matrix
Model

• Standard for mathematical analysis.
• Natural for state space circuit models. • No explicit connection with physical structure.

Transformer Models • Familiar to circuit designers.
• Simplified models for ideal cases elucidate circuit operation. • No explicit connection with physical structure.

Magnetic-Circuit
Model

• Widely used for physical design
• Most straightforward connection to physical structure.

• Use in circuit simulation requires extra dynamic
blocks.

Gyrator-Capacitor
Model

• Circuit directly represents dynamics and energy storage.
• Topology matches structure.

• Use in circuit simulation requires gyrators.
• Relationship to physical structure is abstract.

Inductance-Dual
Model

• Can be used directly in circuit simulation.
• Circuit directly represents dynamics and energy storage.
• 1:1 correspondence between circuit elements and physical ele-

ments.

• The circuit topology is the topological dual of the
physical reluctance path.

• Representing DC flux density accurately in simu-
lation requires DC transformers and extra resistors.

Fig. 9. A symmetric multiphase coupled inductor with many windings. This
structure has M outer legs and a center leg.
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RL RL RL

RC

NiM

RL

Φ1 Φ2 ΦM-1 ΦM 

ΦC 

Fig. 10. Magnetic-circuit model of the structure in Fig. 9. All windings have
N turns. The reluctances of the outer legs are RL, and the reluctance of the
center leg is RC . This structure is fully symmetric.
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Fig. 11. Gyrator-capacitor model of the structure in Fig. 9. All windings have
N turns. Labeled values are capacitance values. The across variable is F; the
through variable is Φ̇ = dΦ/dt.

Finding the topological dual of the magnetic circuit or the
gyrator-capacitor model results in the inductance-dual model
shown in Fig. 12. To capture the dc bias of the magnetic core
in circuit simulations, the ideal transformers in the inductance-
dual model should operate in dc, i.e., the transformer current
relationship should apply to dc as well as ac currents. However,

N
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N
:1
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i2 iM-1 iM

vMvM-1v2v1
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iL1 iL2 iLM-1 iLM

LL=1/R LL=1/R LL=1/R

Fig. 12. Inductance-dual model of the structure in Fig. 9. 1/RC and
1/RL represent the inductive elements of the center leg and the outer legs,
respectively. In SPICE simulations with ideal transformers, iC and iL are
linearly related to ΦC and ΦL in the center leg and the outer legs, respectively.
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rC=ε/R

LL rL rL rLLL LL

Fig. 13. Inductance-dual model including saturable inductors and core-loss
resistors. The series resistors rL and rC are used to ensure the correct dc
current. The parallel resistors RL and RC capture the core loss. By probing
the current in the inductance-dual model and dividing it by the reluctance
value, on can visualize the magnetic flux in each portion of the core and,
for example, see saturation effects. In a magnetic-circuit model, 1

2
Φ2R is the

energy storage. In an inductance-dual model, 1
2
i2/R is the energy storage.

this is insufficient to make the the model in Fig. 12 capture
the dc bias level in each core path, because there is a loop
of ideal inductors for which the dc current is undetermined.
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Fig. 14. Inductance-matrix model of the structure in Fig. 9. The element
values of this model come from the inductance matrix.

To solve this problem, the model in Fig. 13 includes a small,
non-physical resistance in series with each inductor (rL).

For proper dc balancing, the resistance of each is propor-
tional to, but orders of magnitude smaller than, the impedance
of the inductor it is connected in series with. Specifically,
to ensure that the losses in this dc balancing resistor are
negligible, its losses at the switching frequency should be
much smaller than the core loss at the switching frequency.
These core losses, for a given core segment x, could be
modeled by a series resistor of value rc,x = ωS/(QcoreRx),
where Qcore is the quality factor of the core material at this
frequency. So if we choose a dc-balancing resistor for segment
x such that rx � ωS/(QxRx), it will incur much less loss
than the core. For leg with an air gap, the effective quality
factor is Qx is increased by the ratio of the reluctances in that
leg, to Qx = QcoreRgap,x/Rcore,x, as the energy stored in the
air gap has no loss. Because we need the same proportionality
for each segment for proper balancing, we choose rx as

rx =
ωS

100QmaxRx
, (2)

where Qmax is the maximum Q among all the legs, and the
factor of 100 is a large enough factor to ensure that the losses
are negligible.

With the flux, including dc components, represented by
inductor currents, one can probe the currents iL(t) and iC(t),
divide them by the corresponding reluctances RL and RC ,
and visualize the magnetic fluxes ΦL(t) and ΦC(t) in circuit
simulations. Fig. 13 also shows an example of a way to
implement core loss and saturation effects in the inductance-
dual model. Each portion of the magnetic core is implemented
as a saturable inductor (LL or LC). An additional resistor
is then connected in parallel with the saturable inductor and
resistor to capture the core loss of each portion of the magnetic
core. This resistance is usually non-linear. Nonlinear core
behavior can also be captured in a magnetic circuit model, as
used in [17] to model saturation effects in coupled indcutors.

Fig. 14 illustrates the concept of an inductance-matrix model
of a multiwinding coupled inductor. The core of this model is
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Fig. 15. Multiwinding transformer model of the structure in Fig. 9 im-
plemented with an ideal current-equalizing transformer (in blue). The ideal
current-equalizing transformer equalizes the MMFs of all blue windings and
forces the sum of the per- turn voltages of all windings to be zero.

a M×M inductance matrix as per (1). The inductance-matrix
model is interchangeable with a multiwinding transformer
model, as well as with all the other models under discussion.

There are many ways to implement a multiwinding trans-
former model. Fig. 15 shows one example using an ideal
current-equalizing transformer. This model includes a mag-
netizing inductance in parallel with each each winding of the
ideal current-equalizing transformer and a leakage inductance
Ll in series. The turns ratio of the ideal current-equalizing
transformer is {1 : 1 : ... : 1}, assuming equal numbers of
turns N in each physical winding. The individual magnetizing
inductances have a value M

M−1Lµ, where Lµ is defined by
analogy to magnetizing inductance in a two-winding trans-
former as Lµ = LS − Ll where LS is the self inductance
(measured on one winding of the structure with the others
open-circuited) and is also equal to the self inductance in the
inductance matrix equation. To write this model in the form
of an inductance matrix, we also need the mutual inductance
LM = − 1

M−1Lµ.
Fig. 16 shows another implementation of a multiwinding

transformer model using M ideal voltage equalizing trans-
formers. Each of these transformers has a turns ratio of
{(M−1) : 1 : ... : 1} (assuming all physical windings have the
same number of turns). The magnetizing inductance reflected
on the {M − 1} turn side is M−1

M Lµ. The leakage inductance
of each winding is Ll. More discussion of multiwinding
transformer models is provided in [10].

The inductance-matrix model, the extended cantilever
model, and the multiwinding transformer models are math-
based models. The magnetic-circuit model, the gyrator-
capacitor model, and the inductance-dual model are physics-
based models. Math-based models describe the mathematical
equations at the interface, from port-to-port. Physics-based
models illustrate the physical behaviors of the magnetic core
and the windings. These models are all interchangeable under
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Fig. 16. Multiwinding transformer model of the structure in Fig. 9 imple-
mented with an ideal voltage equalizing transformer (in blue). The ideal
voltage equalizing transformer equalizes the per-turn voltages of all blue
windings and forces the sum of the MMFs of all windings to be zero.

the same set of assumptions, but have advantages and disad-
vantages as described in Table I. In particular, the transformer
model in Fig. 15 is advantageous for understanding circuit
operation, and the inductance-dual model in Fig. 12 offers easy
application in circuit simulations while retaining the ability to
directly model the flux in individual magnetic circuit elements,
and it can easily be extended to address non-ideal magnetic
material behavior.

IV. LADDER-CORE AND LAYERED-WINDING
STRUCTURES

In this section, we first consider a commonly used coupled
inductor structure, the ladder core, and relax the assumption
that the top and bottom plates have negligible reluctance to de-
velop a more accurate model. Then we consider a conventional
multi-winding transformer with layered windings, to illustrate
the topological dual relationship between the two structures.

A. Ladder-Core Structure

Fig. 17 shows a parallel-coupled structure implemented with
a ladder core [1]–[5]. This ladder-core structure is attractive
in designing coupled inductors for multiphase buck converters.
If the reluctance of the top and bottom bars of this structure
are neglected, any of the models previously discussed can
be used. But unless they are very thick and/or have very
high permeability, their reluctance may be significant, and the
magnetic-circuit model in Fig. 18 applies. Although there is
no explicit leakage path shown in Fig. 17, the flux leakage
between the top and bottom bar is important to the operation
of this structure in a typical circuit, and is modeled by the
four leakage reluctances, Rl. Fig. 19 shows the corresponding
inductance-dual model. Based on Fig. 18, the magnetic fluxes
[Φ1, ..., ΦM ]T are functions of [F1, ..., FM ]T , which are the
MMF values at the nodes labeled in Fig. 18. The magnetic

v4v3v2v1

i2 i3 i4

N1 N2 N3 N4

i1

Fig. 17. Multiwinding coupled inductor with a ladder core. The windings’
magnetic paths are in parallel and thus have approximately equal MMF and
per-turn voltages that sum to zero.
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N3i3 N4i4

Rµ Rµ 

Φ3 Φ4 

Rt Rt Rt

Rl Rl Rl Rl

Fl F2 F3 F4

Fig. 18. Magnetic-circuit model of the ladder structure in Fig. 17. Labeled
values R are reluctance values.
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Fig. 19. Inductance-dual model of the ladder structure in Fig. 17. Labeled
values 1/R are inductance values.

fluxes and MMFs are linked by a M ×M permeance matrix
P with element values determined by reluctance Rl and Rt:

Φ1

Φ2

...
ΦM


︸ ︷︷ ︸

Φ

=


1
Rt

+ 1
Rl

− 1
Rt

· · · 0

− 1
Rt

1
Rt

+ 1
Rl

· · · 0

...
...

. . .
...

0 0 · · · 1
Rt

+ 1
Rl


︸ ︷︷ ︸

P


F1

F2

...
FM


︸ ︷︷ ︸

F

. (3)

Using Φx = Nix−Fx
Rµ

, the vector of current in all windings (I)
is a function of the vector of fluxes (Φ) in all legs and the
permeance matrix (P):

I =
1

N
(Rµ + P−1)Φ. (4)

Taking the derivative of (4) results in the inductance matrix
relationship connecting the winding current vector (I) and the
winding voltage vector (V):

dI

dt
=

1

N2
(Rµ + P−1)V. (5)
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i2
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i4

Fig. 20. Multiwinding planar transformer. Windings all encircle the same leg
and are thus in series in the magnetic path. This series mangetic coupling
results in approximately equal per-turn voltage and zero summed MMF.

N1i1 N2i2 N4i4

RK

RS RS RS

RV RVRV

Φ1 Φ2 Φ4 
N3i3

Φ3 

RS

RK RK RK

Fig. 21. Magnetic-circuit model of layered transformers such as the planar
structure in Fig. 20. Labeled values are reluctance values.

1/RK 1/RK 1/RK 1/RK

1/RV 1/RV 1/RV

v1 v2 v3 v4

N1:1 N2:1 N3:1 N4:1

i1 i2 i3 i4
1/RS 1/RS 1/RS 1/RS

Fig. 22. Inductance-dual model of a layered transformer such as the planar
structure in Fig. 20. Labeled values are inductance values. The inductance-
dual model was presented as a modular layer model in [41].

B. Layered Winding Structure

In this subsection, we consider a conventional multiwinding
transformer with layered windings. These may be concentric
wire- or foil-wound windings or stacked PCB windings, as
shown in Fig. 20. Fig. 20 also shows a general schematic
of this type of structure with multiple windings coupled to
a single flux path. The corresponding magnetic-circuit and
inductance-dual models of the layered structure, including a
leakage path between each winding layer represented by RK ,
are shown in Figs. 21-22, respectively. The inductance-dual
model of Fig. 22 can be further extended to cover skin and
proximity effects [41].

A duality is observed between the ladder-core models and
the layered winding models. The ladder-core structure has
MMF sources in parallel, and the layered winding structure
has MMF sources in series. The ladder-core structure requires
windings to have similar MMFs, and the layered winding
structure requires windings to have similar fluxes. The ladder-
core structure is usually used to couple windings to make
their ac currents match more closely, and the layered winding
structure is usually used to couple windings to achieve similar
voltage per turn. The ladder-core structure functions well
for coupled inductors in multiphase buck converters, and the
layered winding structure functions well for multiport dc-dc

converters, such as multi-active-bridge (MAB) converters and
energy routers [45]–[47].

V. UNIFYING MODELS FOR IDEALIZED STRUCTURES

This section unifies and compares simplified models for
coupled inductors in which the top and bottom plate or bar re-
luctance is neglected and the model is symmetric. The equation
which describes the inductance-matrix model in Fig. 14 is (1).
The multiwinding transformer models in Fig. 15 and Fig. 16
correspond to (1) with LS = Lµ + Ll and LM = − 1

M−1Lµ.
The magnetic-circuit model in Fig. 10 can be described by a
reluctance matrix R based on RL and RC :

N


i1
i2
...
iM


︸ ︷︷ ︸

I

=


RL + RC RC · · · RC

RC RL + RC · · · RC
...

...
. . .

...
RC RC · · · RL + RC


︸ ︷︷ ︸

R


Φ1

Φ2

...
ΦM


︸ ︷︷ ︸

Φ

.

(6)
The equation which describes the gyrator-capacitor model

and the inductance-dual model is the time derivative of (6):

N
dI

dt
= R

dΦ

dt
= RL

dΦ

dt
+ RC

dΦC
dt

=
RL

N
V +

RC

N

M∑
x=1

vx. (7)

Note that L = N2R−1. As a result:

LS =
N2(RL + (M − 1)RC)

RL(RL +MRC)
= Lµ + Ll, (8)

LM =
−N2RC

RL(RL +MRC)
= − 1

M − 1
Lµ, (9)

Ll =
N2

RL +MRC
= LS + (M − 1)LM , (10)

Lµ =
N2(M − 1)RC
RL(RL +MRC)

= −(M − 1)LM . (11)

In a highly coupled structure, RL � RC , the relationships
between LS , LM , Lµ, Ll, RL and RC become:

LS ≈ (M − 1)N2

MRL
, (12)

LM ≈ −N2

MRL
, (13)

Ll ≈
N2

MRC
, (14)

Lµ ≈ (M − 1)N2

MRL
. (15)

To design a multiphase coupled inductor, it is important
to be able to estimate the dc flux density in each portion of
the core. In the inductance-dual model, the current that goes
through LC = 1/RC , iC , is related to ΦC . The current in each
of the legs, iL1, iL2, ..., iLM is related to the flux going through
the corresponding outer leg of the core, Φ1,Φ2, ...,ΦM :

dΦC
dt

=

∑M
x=1 vx

N
=

1

RC

diC
dt

, (16)

dΦx
dt

=
vx
N

=
1

RL

diLx
dt

. (17)
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If the model in Fig. 13 is used, then

ΦC =
iC
RC

; Φx =
iLx
RL

. (18)

Assuming the dc currents of all winding are all equal I1 =
I2 = ... = IM = IDC , and the output current Io = MIDC ,
the dc flux densities in the outer legs (ΦL,DC) and center leg
(ΦC,DC) of the magnetic core, which determines the peak flux
density when the system is working at full load, are functions
of M , N , RL, RC , and IDC :

ΦL,DC =
NIDC

RL +MRC
=

NIo
M(RL +MRC)

=
Ll
MN

Io, (19)

ΦC,DC =
MNIDC

RL +MRC
=

NIo
RL +MRC

=
Ll
N
Io. (20)

If current is balanced, the dc fluxes in the outer legs and center
leg of the magnetic core are only determined by the leakage
inductance Ll and the output current Io. The geometry of the
core should be designed based on Ll, Io, and current ripple,
as discussed in more detail in the following section.

VI. MULTIPHASE COUPLED INDUCTOR BUCK CONVERTER

Coupled inductors can greatly enhance the performance of
multiphase buck converters [1]–[16]. By coupling the multiple
inductors with a single high-permeability magnetic core, one
can significantly reduce the current ripple in each of the phase
in order to reduce the conduction loss in switches, windings,
and printed circuit board. One can, of course, achieve, the same
ripple reduction in a single-phase or multiphase uncoupled
design by using a larger inductor value, but this has two
important disadvantages: It increases the energy storage, and
thus increases the size and loss of the inductor. And it slows
the transient response. Since these two effects scale together,
we focus on considering ripple reduction for a fixed transient
response impedance, and thus show the improvement available
through coupling without the disadvantages of increasing
inductance in the absence of coupling.

Even without coupling, the use of multiple phases can
reduce ripple through partial cancellation at the output by
multi-phase interleaving [52]–[55]. To compare an uncoupled
multiphase converter to a single-phase converter, we apply the
constraint of equal transient response. With M phases, the
reaction of the system to a perturbation in duty cycle across
all phases, or to simply switching all phases high or low in a
more urgent situation, is an equal perturbation applied to all
M inductors, effectively connected in parallel. Thus, for equal
transient response, the parallel combination of M inductors
in the multiphase circuit should be equal to the value of the
inductor used in the single-phase circuit: L1φ = LMφ/M ,
where LMφ is the per-phase uncoupled inductor value used
in an M -phase circuit. With this choice, the absolute ripple-
current amplitude in each phase is lower than the total ripple
current in the single-phase converter by a factor of 1/M . The
dc current in each phase is also lower than the overall dc
current by the same factor, so each inductor of the M -phase
design has the same current ripple ratio as the inductor with
the same inductance in a single-phase design.

In the multi-phase converter, the total output capacitor
current ripple amplitude, after partial cancellation of the ripple

0 0.2 0.4 0.6 0.8 1
Duty Ratio (D)

0

0.2

0.4

0.6

0.8

1

1.2

M=1
M=2
M=4
M=8

Fig. 23. Output current ripple reduction factor (Γ) for an M -phase interleaved
buck converter with duty ratio D. Γ quantifies the benefit of interleaving for
output current ripple reduction in multiphase buck converters, whether coupled
or not. The maximum Γ is 1/M . As M increases, Γ decreases.

current when the individual phase currents are combined, is
reduced compared to the ripple in the single-phase converter
by a factor that depends on the relationship between the duty
ratio and the number of phases. As the way the phases interact
depends on how many phases are energized simultaneously,
it is convenient to introduce an integer index k such that
k
M ≤ D < k+1

M . In terms of k, duty ratio D and number
of phases M , the output ripple of an interleaved uncoupled
multiphase buck converter is reduced relative to that of a
single-phase converter with the same response time by a factor

Γ
def
=

∆iMφ
o

∆i1φo
=

(k + 1 −DM)(DM − k)

(1 −D)DM2
, (21)

where we use the notation ∆iMφ
o to indicate peak-to-peak

current ripple amplitude with the subscript o indicating the
output, or overall ripple after the phase currents are combined,
and the superscript Mφ indicates an M -phase converter. Γ
quantifies the benefits of interleaving for output current ripple
reduction. It is similar to the factor δ in [55], except that Γ
is normalized by M for equal transient response in the two
converters being compared.

Fig. 23 plots Γ as a function of M and D. Γ decreases as M
increases. When the duty cycle is near an integer multiple of
1/M , Γ approaches 0, indicating fully cancelled output current
ripple. The advantage of coupling is that some of this benefit
of output current ripple reduction can be extended to the ripple
in each phase, and indeed, practical designs can approach the
full reduction factor given by (21) with strong coupling.

We wish to consider coupled designs in the same framework
of fixing transient response and varying other parameters,
so we first evaluate the transient response. We can do this
based on any of the models, considering either a small-signal
perturbation to D or the large signal response with all phases
switch high or low, with equivalent results in all cases. For
example, [10] examines a small-signal duty ratio perturbation
using the inductance-matrix model. The appendix analyses the



IEEE TRANSACTIONS ON POWER ELECTRONICS: REGULAR PAPER 9

inductance-dual model with a small signal duty ratio pertur-
bation. In all cases the result is that impedance of the whole
structure to this common-mode excitation is the impedance
of the parallel combination of all the leakage inductances,
Ll/M . Perhaps the most intuitive way to understand this is
to consider the transformer models (Figs. 15 and 16) with
all of the (+) terminals connected together and all of the (-
) terminals connected together. In Fig. 15, the transformer
equation requires all of the transformer winding voltages to
sum to zero, and by symmetry, the only way for this to happen
is with zero voltage across all of them, and thus zero voltage
across the magnetizing inductances. The transformer portion
of the model is transparent to this common mode excitation,
and the impedance is just that of the leakage inductances. A
similar argument applies to the model of Fig. 16.

Thus, the leakage inductance Ll determines the transient
impedance [57]. For ripple comparisons, we want to consider
holding the leakage inductance fixed as we vary the coupling,
equal to the per-phase inductance L1φ in the uncoupled case.
The per-phase transient inductance (termed Lptr in [10]) is
equal to Ll and the overall transient inductance, Lotr = Ll/M .
As is shown in Table III, Ll is given in terms of the parameters
of other models as

Ll = LS + (M − 1)LM =
N2

RL +MRC
. (22)

The steady-state ripple in the coupled case has been calcu-
lated in many different papers, with equivalent results, even
though different formulations are used. Early papers such as
[1] and [9] focus on two-phase converters with a limited range
of duty cycles. In [2], this was generalized for an arbitrary
number of phases, for duty ratio D ≤ 1/M . The analysis
in [10] considers arbitrary duty ratios using the index k as
defined in conjunction with (21). The steady state phase ripple
is described in [10] by an effective inductance1, the so-called
”per-phase steady-state inductance,” Lpss. This is defined as an
the inductance value that would, if used for discrete, uncoupled
inductors in each phase of the same converter, result in the
same peak-to-peak steady-state current ripple amplitude. It is
given in terms of the inductance matrix parameters as

Lpss =
(1 − α)(1 + (M − 1)α)

1 +
(
M − 2k − 2 + k(k+1)

MD
+ MD(M−2k−1)+k(k+1)

M(1−D)

)
α
,

(23)
where α is the coupling factor −LM/LS used in [9]. This can
be used to find the ripple amplitude in each phase winding in
the standard equation for ripple in a buck converter

∆ip =
VOUT (1 −D)T

Lpss
, (24)

where we again use the notation ∆i to indicate peak-to-peak
ripple, and the subscript p indicates the ripple in the winding of
one of the M phases. The superscript Mφ is dropped because
the subscript p only applies when there are multiple phases.

We are now equipped to quantify the reduction in phase
current ripple afforded by multiphase coupling, while keeping

1The approach in [10] uses a suite of four effective inductance parameters.
These are reviewed in the appendix and derived based on the inductance-dual
model, demonstrating the equivalence of the inductance-dual model to the
inductance-matrix model used in [10].
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Fig. 24. Contours of phase current ripple reduction factor (γ) for a multiphase
coupled buck converter as a function of the output current ripple factor (Γ)
and coupling coefficient (β). As β increases, γ approaches Γ, indicating
that coupling extends the output current ripple improvement achieved through
multiphase interleaving to the individual phase currents.

the transient response constant. We define a phase ripple
current reduction ratio γ as

γ
def
=

∆icpp
∆inoncpp

, (25)

with the inductance value in the uncoupled case equal to the
leakage inductance of the coupled system for equal transient
response. We use the superscripts cp or noncp to indicate the
coupled or uncoupled cases. Because (24) is unchanged for
these two cases,

γ =
Ll
Lpss

. (26)

To consider γ or similar performance metrics as a func-
tion of the magnetic structure design, various papers in the
literature use different parameters to describe the degree of
coupling. The traditional parameter is the coupling factor
α

def
= −LM/LS used in [9]; for strong coupling, α approaches

1. In [1], the parameter ρ def
= Lµ/Ll is used. This allows

a straightforward application to the case of fixed Ll: ρ is
simply the value of Lµ normalized to the leakage inductance.
For the inductance-dual model, it is convenient to use a
reluctance ratio β

def
= MRC/RL which is the ratio of center

post reluctance to the parallel combination of all the outer leg
reluctances. Note that ρ is closely related to β by ρ = M−1

M β.
Conversions between different parameterizations are provided
in Table III.

By combining (26) with calculations of its parameters based
on the various models, we can write expressions for γ as a
function of the parameters α, ρ, β that are consistent with the
equations corresponding equations in [9] and [1], for the scope
of those equations (2-phase only and D ≤ 1/M , respectively).
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Fig. 25. Phase current ripple reduction factor γ for a multiphase coupled
buck inductor as a function of the duty ratio (D) for various numbers of
phases (M ) and reluctance ratios (β = MRC/RL). A lower γ indicates
more winding current ripple reduction. A high β indicates strong coupling,
and a low β indicates weak coupling.

Perhaps most elucidative is the expression in terms of coupling
factor β and output current ripple reduction factor Γ:

γ =

1
β

+ Γ
1
β

+ 1
=

1 + β · Γ

1 + β
. (27)

As illustrated in Fig. 24, this equation shows how the ben-
efits of multiphase interleaving in reducing the output current
ripple (Γ) are extended to phase current ripple reduction by
the coupling factor (β). As coupling increases (a high value
of β), the ripple reduction achieved in the phases approaches
the ripple reduction in the combined output, Γ. This can be
intuitively understood from the transformer model in Fig. 15:
as coupling increases and Lµ becomes large, the transformer
enforces equal current ripple in all phases, equal to the ripple
that would be seen the output after they all combine. As the
coupling decreases, the result strays from this ideal. For small
Γ, such as at duty cycle near an integer multiple of 1/M ,
it approaches γ = 1/(1 + β). Fig. 25 plots γ for a range
of D, M , and β. γ is always between zero and one, with a
smaller γ being better, indicating reduced ripple, or, if ripple
is held fixed, an opportunity to reduce inductance to make the
magnetic components smaller and speed up transient response.
We can see that for sufficiently large β, the ripple reduction
γ approaches Γ. For moderate β, if D is close to an integer
multiple of 1/M , the ripple reduction approaches 1/(1 + β)
as discussed above: for example, when β = 1 the curves all
go to 1/2 at integer multiple of 1/M .

In practice, β can be increased by reducing RL, by using
high permeability core material, reducing length of the legs,
and increasing area of the legs. RC is then adjusted to maintain
the selected Ll to meet the transient requirements while
maintain a small ripple. Trade-offs exist between core loss,
saturation margin, energy storage requirements, and transient
response. In an optimal design, the core loss, winding loss,

0 0.5 1
Duty Ratio (D)

0

0.5

1

(
i p) no

rm

 = 0.25

0 0.5 1
Duty Ratio (D)

0

0.5

1

(
i p) no

rm

 = 1

0 0.5 1
Duty Ratio (D)

0

0.5

1

(
i p) no

rm

 = 5

0 0.5 1
Duty Ratio (D)

0

0.5

1

(
i p) no

rm

 = 25

M=1
M=2
M=4
M=8

Fig. 26. Normalized winding current ripple (∆ip)norm for a multiphase
coupled buck inductor as a function of the duty ratio (D) for various numbers
of phases (M ) and reluctance ratios (β = MRC/RL). A lower (∆ip)norm
indicates smaller absolute winding current ripple. A high β indicates strong
coupling, and a low β indicates weak coupling.

TABLE II
KEY PARAMETERS FOR MULTIPHASE COUPLED BUCK CONVERTERS

Coupling Parameter β = MRC
RL

= M
M−1

Lµ
Ll

= −M·LM
LS+(M−1)LM

Output Ripple Reduction Γ =
∆iMφo

∆i
1φ
o

= (k+1−DM)(DM−k)

(1−D)DM2

Phase Ripple Reduction γ =
∆icpp

∆i
noncp
p

= 1+βΓ
1+β

Normalized Output Current (∆ip)norm =
∆icp,phase

∆imax,cp,phase
= 4D(1 −D)γ

efficiency, power density, and transient and steady-state perfor-
mance are highly correlated and need to be jointly optimized
for a given design specification. For example, the optimization
in [1] uses such optimizations to show how coupling can
reduce volume and loss while holding transient response fixed,
or improve transient response while holding volume and loss
fixed. The number of phases is also considered, and for the
parameters considered in that work, it is shown that 4 to 6
phases is preferred. With fewer phases, there is less of a benefit
from coupling, whereas with more phases, general magnetics
scaling trends [56] that lead to lower efficiency and power
density with many small inductors kick in.

Short of a full optimization as in [1], a good strategy to
design coupled inductors for multiphase buck converter is:

1) Selected a magnetic structure with RL � RC ;
2) Choose an appropriate per-phase transient inductance (Ll)

based on the tradeoff between transient response and the
overall output voltage ripple, assuming that a high β will
allow approaching a ripple reduction close the the ideal
of γ = Γ.

3) Determine the required value of RL + MRC based on
the selected Ll and N .

4) Design the magnetic structure (material and geometry)
to minimize RL and adjust RC to maintain the selected
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Fig. 27. Summary of the key design parameters of a few multiphase buck
converters with the same transient performance. Interleaving maintains the
per-phase current ripple and reduces the output current ripple by a factor of
Γ. Coupling extends the benefits of interleaving to phase current reduction,
and reduces the phase current ripple by a factor of γ.

Ll. In choosing the geometry parameters, cosiderations
include minimizing the loss and ensuring enough margin
to avoid saturation under balanced excitation.

5) Evaluate the flux under the expected worst-case mismatch
between phase currents. If this leads to saturation, add
small gaps in the outer legs as necessary to accommodate
the mismatch.

There is always parasitic inductance adding to Ll of the
coupled inductor. When the targeted value of Ll is small, the
parasitic inductance outside the transformer may provide a
significant fraction of the necessary leakage inductance, thus
providing an opportunity to reduce the required inductance
and thus reduce the energy storage required in the magnetic
structure and reduce its size. In some cases, the parasitic
inductance may exceed the targeted value of Ll, and careful
layout to reduce parasitic inductance may be needed.

The absolute value of the current ripple per-phase impacts
the loss in the windings and switches. If D varies over a
significant range in an application, it is useful to consider the
worst-case absolute ripple for a given design, not just the ripple
reduction ratio γ. The current ripple of each phase is

∆ip =
VOUT (1 −D)T

Lpss
= γ

VIND(1 −D)T

Ll
. (28)

A helpful way to consider this is to normalize it to the worst-
case phase current ripple at D = 0.5 with no coupling,

∆imaxp =
VOUTT

2Ll
=
VINT

4Ll
, (29)
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Fig. 28. The geometry of a four-phase coupled inductor with four outer legs
and one center leg (dimension labeled in mm). The effective length of each
outer leg is 18 mm. The effective area of each outer leg is 11.25 mm2. The
effective area of the center leg is 45 mm2. The relative permeability of the
core is 2300. There is a 0.1 mm air gap in the center leg.

Fig. 29. An example four-phase coupled inductor buck converter. Each phase
has a single turn. The extra winding outside the core (for current measurement)
adds about 30 nH parasitic inductance to each winding of the coupled inductor.

resulting in the normalized current ripple:

(∆ip)norm
def
=

∆ip
∆imaxp

= γ4D(1−D) =
1 + βΓ

1 + β
4D(1−D). (30)

Fig. 26 plots this normalized current ripple across a range of
D, M , and β. Both Figs. 26 and 25 illustrate the advantages
of increasing the coupling and of increasing the number of
phases. Fig. 25 directly shows how much benefit is provided
at a given operating point, whereas Fig. 26 is useful for
considering a range of operating points with different duty
ratios, and assessing the ripple and ripple reduction at the
worst-case point over that range.

Table II lists the key design parameters for multiphase
coupled inductors. Fig. 27 illustrates the relationships among
these parameters. Table III summarizes the equations for
calculating various parameters based on the inductance-matrix
model, inductance-dual model, and multiwinding transformer
model2.

VII. MODEL VERIFICATION

A four-phase coupled inductor design was selected to ver-
ify the models discussed in this paper. This design is not
optimized for a particular application. Fig. 28-29 show the
geometry of a SIEMENS P1814 B65561-A0400 core with N26
material. The structure has four outer legs and one center leg.

2A software tool – Princeton CoupL – was developed based on Table II
and is available at: http://www.princeton.edu/∼minjie/coupL/coupL.html.

http://www.princeton.edu/~minjie/coupL/coupL.html
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TABLE III
UNIFIED MODEL PARAMETER EQUATIONS FOR MULTIPHASE COUPLED BUCK INDUCTORS

Parameters D: Duty Ratio; M : Number of Phases; k
M

≤ D < k+1
M

; N : Number of Turns per Winding

Output current ripple reduction factor for all cases Γ
def
=

∆iMφo

∆i
1φ
o

= (DM−k)(1+k−DM)

(1−D)DM2

Model Type Uncoupled Multiphase Interleaved Inductance-Dual Model

Matrix


v1

v2

...
vM

 =


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L



di1
dt
di2
dt
...

diM
dt

 N2


di1
dt
di2
dt
...

diM
dt

 =


RL + RC RC · · · RC

RC RL + RC · · · RC
...

...
. . .

...
RC RC · · · RL + RC



v1

v2

...
vM



Model

L

v1

v2

vM-1

vM

L

L

L

i1

i2

iM-1

iM

+

+

+

+

-

N
1
:1

N
2
:1

N
M

-1
:1

N
M

:1

i1

1/R 1/R 1/R 1/R

1/R

i2 iM-1 iM vMvM-1v2v1

Parameter Self : L Side: RL = N2

LS−LM
= N2(M−1)

(M−1)Ll+MLµ

Values Mutual : 0 Center: RC = −N2LM
(LS−LM )(LS+(M−1)LM )

=
N2Lµ

Ll((M−1)Ll+MLµ)

γ =
∆icpp

∆i
noncp
p

N/A γ = 1+Γβ
1+β

, β = MRC
RL

Lptr L N2

RL+MRC

Lotr =
Lptr
M

1
M

· L 1
M

· N2

RL+MRC

Lpss =
Lptr
γ

L N2(1−D)

− k2RC
DM

− kRC
DM

+2kRC−DMRC+RC−DRL+RL

Loss = Lotr
Γ

(1−D)DM
(DM−k)(1+k−DM)

· L (1−D)DM
(DM−k)(1+k−DM)

· N2

(RL+MRC)

ΦL,DC/Iout
L
MN

N
M(RL+MRC)

ΦC,DC/Iout N/A N
RL+MRC

References [52]–[55] This work

Model Type Inductance-Matrix Model Multiwinding Transformer Model

Matrix


v1

v2

...
vM

 =


LS LM · · · LM
LM LS · · · LM

...
...

. . .
...

LM LM · · · LS



di1
dt
di2
dt
...

diM
dt



v1

v2

...
vM

 =


Lµ + Ll − 1

M−1
Lµ · · · − 1

M−1
Lµ

− 1
M−1

Lµ Lµ + Ll · · · − 1
M−1

Lµ
...

...
. . .

...
− 1
M−1

Lµ − 1
M−1

Lµ · · · Lµ + Ll



di1
dt
di2
dt
...

diM
dt



Model

LS
v1

v2

vM-1

vM

LS

LS

LS

LM

LM

LM

LM

LM

LM

i1

i2

iM-1

iM

+

+

+

+

-

Ll

M-1

M-11

1

1

1

 

Ll

Ll

Ll

M-1

1

1

1

1 1

(M-1):1: :1 1:(M-1): :1 1: :1:(M-1)

v1

v2

vM-1

vM

i1

i2

iM-1

iM

+

+

+

+

-

Lµ 
M-1
M

Lµ 
M-1
M

Lµ 
M-1
M

NLµ 
M-1

M

N

N

N

v1

v2

vM-1

vM

+

+

+

+

Lµ 
M-1

M

Lµ 
M-1

M

Lµ 
M-1

M

Ll 

Ll 

Ll 

Ll 

i1

i2

iM-1

iM

-

  

  

  

  

  

  
  

  

  

Parameter Self: LS = N2(RL+(M−1)RC)
RL(RL+MRC)

= Lµ + Ll Leakage: Ll = N2

RL+MRC
= LS + (M − 1)LM

Values Mutual: LM = −N2RC
RL(RL+MRC)

= − 1
M−1

Lµ Magnetizing: Lµ = N2(M−1)RC
RL(RL+MRC)

= −(M − 1)LM

γ =
∆icpp

∆i
noncp
p

γ = 1+Γβ
1+β

, β = −M·LM
LS+(M−1)LM

γ = 1+Γβ
1+β

, β = M
M−1

Lµ
Ll

or or
1−((M−2k−2)+

k(k+1)
MD

+
MD(M−2k−1)+k(k+1)

M(1−D)
)α

1+α
, α = −LM

LS

MD(1−D)(M−1)+(MD(1−MD)−k2−k+2MDk)ρ
MD(1−D)(M−1+Mρ)

, ρ =
Lµ
Ll

Lptr LS + (M − 1)LM Ll
Lotr =

Lptr
M

1
M

· (LS + (M − 1)LM ) 1
M

· Ll
Lpss =

Lptr
γ

(LS−LM )(LS+(M−1)LM )

LS+((M−2k−2)+
k(k+1)
MD

+
MD(M−2k−1)+k(k+1)

M(1−D)
)LM

(1−D)DM((M−1)Ll+MLµ)Ll
DM(1−D)(M−1)Ll+(DM(1−DM)−k2−k+2DMk)Lµ

Loss = Lotr
Γ

(1−D)DM
(DM−k)(1+k−DM)

· (LS + (M − 1)LM ) (1−D)DM
(DM−k)(1+k−DM)

· Ll

ΦL,DC/Iout
LS+(M−1)LM

MN
Ll
MN

ΦC,DC/Iout
LS+(M−1)LM

N
Ll
N

References [8]–[10] [1]–[5]
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𝝁

Fig. 30. Measurements used for parameter extraction from the fabricated
coupled inductor. Lotr : measured inductance of four windings connected in
parallel. LS : measured inductance of a single winding on an outer leg.

Fig. 31. Simulated transient output voltage waveforms of a four-phase buck
converter with (top) four uncoupled 133 nH inductors; (middle) one four-
phase coupled inductor with a per-phase transient inductance of 133 nH, and
per-phase steady-state inductance of 838 nH; and (bottom) four uncoupled
838 nH inductors.

The reluctances RL and RL were calculated based on simple
approximations. These values, denoted as R∗

L and R∗
C , are

492,070 H−1 and 1,860,700 H−1, respectively. Fig. 30 shows
the measured inductance of the prototype used for parameter
extraction. With N = 1, the measured inductance with
four windings connected in parallel Lotr was 25.7 nH. The
measured self inductance of a single winding with the others
open circuited LS was 1.54 µH. As explained in Appendix II,
these can be used was used to obtain values of RL and RC as

RL =
N2(M − 1)

M(LS − Lotr)
, (31)

RC =
N2(LS −MLotr)

M2Lotr(LS − Lotr)
. (32)

resulting in RL = 496, 100 H−1 and RC = 2, 307, 600 H−1.
The extracted parameters match well with the calculated ones.

In the test circuit, the structure is connected with longer
leads to facilitate current measurements. These leads add about
30 nH of parasitic inductance in series with each winding. We

TABLE IV
MODEL PARAMETERS FOR THE PROTOTYPE COUPLED INDUCTOR

Parameter Symbol Value for structure only Value including Lp

Measured single winding LS 1.54 µH N/A
Measured shorted windings Lotr 25.7 nH N/A

Measured Parasitic Inductance Lp N/A 30 nH in each phase

Extracted leg reluctance RL 496,100 H−1 N/A
Extracted centerpost reluctance RC 2,307,600 H−1 N/A

Calculated leg reluctance R∗
L 492,070 H−1 N/A

Calculated centerpost reluctance R∗
C 1,860,700 H−1 N/A

Inductance-dual LL 2.01 µH 2.04 µH
model LC 434 nH 569 nH

Multiwinding transformer Ll 103 nH 133 nH
model Lµ 1.43 µH 1.43 µH

Inductance matrix LS 1.53 µH 1.56 µH
model LM -477 nH -477 nH

Effective inductance Loss 258 nH 333 nH
parameters (Appendix I.) Lpss 705 nH 838 nH

for D = 1/6 Lotr 25.8 nH 33.2 nH
Lptr 103 nH 133 nH

Key design parameters β 18.5 14.3
for D = 1/6 Γ 10.0% 10.0%

γ 14.6% 15.8%

can construct a model that includes this additional inductance
as part of the same model structure, as shown in the second
column of Table IV, or we can analyze or simulate the
circuit using the model of the structure itself with separate
inductances representing the parasitic lead inductance. The
parameters for this approach are shown in the first column
in Table IV. We neglect any mutual coupling between the
parasitic inductances. Although the need for modeling the
parasitic inductance in our case was driven by the use of extra
instrumentation for demonstration purposes, it is important
in practical applications as well, such as in fast-response
converters where the leakage inductance of the structure is
designed to be very low and so even small parasitic inductance
becomes significant.

Fig. 31 shows the simulated open-loop startup voltage
transient waveforms of three experimental designs. Design-
1 uses four small 133 nH uncoupled inductors. Design-2
uses the four-phase coupled inductor which, with the parasitic
inductance included in the model, is expected to have the same
transient performance but with coupling reducing the ripple to
the equivalent of that expected with 838 nH per-phase induc-
tance. Design-3 uses four big uncoupled 838 nH inductors. The
simulated output voltage transient waveforms of Design-1 and
Design-2 are exactly the same. The output voltage transient of
Design-3 has large overshoot and oscillation.

The inductance-dual model, multiwinding transformer
model, and inductance-matrix model of the prototype coupled
inductor are shown in Figs. 32-34, respectively. For clarity, we
show these with the parasitic inductance modeled separately,
although in practice, incorporating the parasitic inductance
into the model makes modeling and analysis easier. In the
multiwinding transformer model, Ll is 103 nH and Lµ is
1.43 µH. The input voltage is 3 V, the average output current is
10 A, the output capacitance is 200 mF, the output resistance is
0.05 Ω, the switching frequency is 125 kHz, and the duty ratio
D = 1/6. An un-coupled four-phase buck converter would
achieve the same transient response with 133 nH inductors in
each phase. This results in per-phase current ripple of 25.1 A
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Fig. 32. SPICE simulation of the four-phase coupled inductor buck converter
based on the inductance-dual model.

Fig. 33. SPICE simulation of the four-phase coupled inductor buck converter
based on the multiwinding transformer model implemented with an ideal
voltage equalization transformer.

Fig. 34. SPICE simulation of the four-phase coupled inductor buck converter
based on the inductance-matrix model.

and rms current of 9.59 A. With the prototype four-phase
coupled inductor, the transient response is the same, but the
steady-state phase current ripple is reduced by coupling, to
an expected value of 3.98 A, 15.8% of that of the uncoupled
case. The expected rms current is 2.70 A, 28.1% of that of
the uncoupled case.

Fig. 35 shows the simulated steady-state per-phase current
of the three converters. Simulations of the coupled case were
performed with the three different models in Figs. 32–34,
with identical results. The per-phase current ripple of the
converter with four small inductors was 25.1 A, and the per-
phase current ripple of the buck converter with the coupled
inductor was 3.98 A. The simulation results match with the
calculated results. Fig. 36 shows the measured waveforms of
the experimental prototype. As expected, the measured per-
phase peak-to-peak current ripple is about 4 A.

To demonstrate the capability of the inductance-dual model
to include magnetic saturation, the design was modified by
changing the number of turns on one of the windings to two,
while leaving the others windings with one turn. This results
in an asymmetric structure that saturates early with equal dc
currents in the different legs. Fig. 37 shows a circuit simulation
model (implemented in Powersim) with saturable inductor
models. In this case, it was important to model the parasitic
inductance separately from the coupled structure, such that the
elements of the model correspond directly to the parts of the
magnetic core. A non-linear current-flux-linkage relationship

Fig. 35. Simulated steady-state winding current of a four-phase buck converter
with (top) four uncoupled 133 nH inductors; (middle) one four-phase coupled
inductor with a per-phase transient inductance of 133 nH, and per-phase
steady-state inductance of 838 nH; and (bottom) four uncoupled 838 nH
inductors.

i1

i2

i3

i4

Fig. 36. Measured waveforms of the symmetric four-phase coupled inductor.
N

:1

N
:1

N
:1

N
:1

i1

LC=1/R

i2 iM-1 iM

vMvM-1v2v1

iC

iL1 iL2 iLM-1 iLM

rC=ε/R

LL rL rL rLLL LL

Fig. 37. Simulation setup in Powersim with asymmetric structure and
saturable inductor models. The saturable inductor model represents non-linear
current-flux-linkage relationships in circuit simulations.

was implemented in the saturable inductor model in circuit
simulations, and small resistors were used in series with each
resistor to stabilize dc flux levels as per (2). The unbalanced
MMF leads to unbalanced current and flux distribution, and
may cause saturation when the flux mismatch is significant.
Fig. 38 shows the measured waveforms of the modified design
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i1
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i4

Fig. 38. Measured waveforms of the asymmetric four-phase coupled inductor.
Winding #1 has two turns, and Windings #2-#4 have a single turn.
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Fig. 39. Simulated waveforms of the asymmetric four-phase coupled inductor.
Winding #1 has two turns, and Windings #2-#4 have a single turn.

with 10 A as the overall output current. Strong asymmetry
was observed in phase current, as predicted by the simulation
results in Fig. 39.

The saturation flux density Bsat of the SIEMENS N26
material is about 390 mT at 25 °C. The saturation flux Φsat =
BsatAC of the outer leg was 4.388 µWb (AC = 11.25 mm2).
RL was 496,100 H−1. The threshold current for the saturable
inductor is about 2.17 A. Fig. 40 shows the measured current
waveforms when winding #1 with two turns is saturated (i1).
The total output current is about 20 A. The average current per
phase is about 5 A. The per-phase inductance of this winding
drops significantly as the inductor current (i1) approaches the
saturation limit (5 A), which matches well with the simulated
results in Fig. 41. Fig. 42 shows the simulated current of
LL and LC which reflects the outer and center leg flux
(iL = ΦLRL). The magnetic core was saturated when iL
approaches 2.17 A (ΦsatRL). The non-linear saturation effects
are captured in SPICE simulations.

i1

i2

i3

i4

Fig. 40. Measured waveforms of the asymmetric coupled inductor with
2:1:1:1 turns ratio. The leg with two turns is saturated and a current spike is
observed. The waveform patterns of the other three legs remain the same.
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Fig. 41. Simulated waveforms of the asymmetric coupled inductor with
2:1:1:1 turns ratio.The leg with two turns is saturated and a current spike
is observed. The waveform patterns of the other three legs remain the same.

VIII. CONCLUSIONS

This paper unifies the lumped circuit models for multi-
phase coupled inductors. Models including inductance-matrix
models, multiwinding transformer models, extended cantilever
models, magnetic-circuit models, gyrator-capacitor models,
and inductance-dual models are summarized and compared.
These models represent identical mathematical relationships in
the multiphase coupled inductors, but reveal different physical
fundamentals and distinct design insights. Inductance-matrix
models, multiwinding transformer models, and extended can-
tilever models are math-based models. Magnetic-circuit mod-
els, gyrator-capacitor models, and inductance-dual models are
physics-based models. All are equivalent in the linear case,
and we provide formulas to convert parameters between the
different models. The inductance-dual model is particularly
useful amongst these models because it is directly built on
elements in the magnetic-circuit model and offers convenience
in circuit simulations. Core loss and saturation effects in each
portion of the core can be captured.
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iL1=ΦL1RL1

iL2=ΦL2RL2

iL3=ΦL3RL3

iL4=ΦL4RL4

iC=ΦCRC

Fig. 42. Simulated current waveforms of LL and LC in the inductance-dual
model when the inductors LL are implemented as saturable inductors. The leg
with two turns is saturated. The inductance-dual model allows the magnetic
flux be visualized as current, and enable rapid evaluation of the flux density.

It is shown that phase-current ripple reduction that coupling
provides in a multiphase buck converter can be calculated with
a simple equation in terms two parameters, Γ which quantifies
the output ripple current reduction provided by multiphase
interleaving, and β which quantifies the degree of coupling.
This formulation simplifies design and analysis calculations,
while also providing insight on origin of the coupling benefit.

The models and design equations have been verified through
theoretical derivation, SPICE simulations, and experimental
measurements.
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APPENDIX I: EFFECTIVE INDUCTANCE PERFORMANCE
PARAMETERS

Four design parameters were defined in [10] based on the
inductance-matrix model for a M -phase coupled inductor buck
converter with an arbitrary duty ratio D by defining an index
k to indicate the number of phases that are simultaneously
energized. D and k are related by k

M ≤ D < k+1
M :

1) Overall steady-state inductance (Loss): the multiphase
coupled inductor results in the same total output peak-to-
peak ripple current amplitude as a single discrete inductor
with inductance Loss.

2) Per-phase steady-state inductance (Lpss): each phase of
the multiphase coupled inductor has the same peak-to-
peak steady-state current ripple as with individual discrete
inductors with inductance Lpss;

3) Overall transient inductance (Lotr): the multiphase cou-
pled inductor behaves as a single discrete inductor with
Lotr as the inductance for the purposes of evaluating the
overall transient performance and small signal model;

𝒈𝟏

𝒈𝟐
𝒈𝟑

𝒈𝟒

𝒊𝟏

𝒊𝟐
𝒊𝟑

𝒊𝟒

𝜟𝒊𝒐 =
𝑽𝑰𝑵
𝑳𝒐𝒔𝒔

𝑫 𝟏 − 𝑫 𝑻

𝜟𝒊𝒑 =
𝑽𝑰𝑵
𝑳𝒑𝒔𝒔

𝑫 𝟏 − 𝑫 𝑻

𝒊𝒐

𝑻
𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒

Effective overall output 
steady state inductance 𝑳𝒐𝒔𝒔:

Effective per phase steady state 
inductance 𝑳𝒑𝒔𝒔:

Fig. 43. Effective overall steady-state inductance (Loss) and effective per-
phase steady-state inductance (Lpss) of the multiphase coupled inductor.

4) Per-phase transient inductance (Lptr): the same physical
meaning as the overall transient inductance, but normal-
ized on a per-phase basis by dividing the overall transient
inductance by the number of phases.

These parameters are expressed as functions of LS , LM ,
D, M , and k in [10] based on the inductance-matrix model:

Loss =
(1 −D)DM(LS + LM (M − 1))

(DM − k)(1 + k −DM)
,

Lpss =
(LS − LM )(LS + (M − 1)LM )

LS + ((M − 2k − 2) + k(k+1)
MD

+ MD(M−2k−1)+k(k+1)
M(1−D)

)LM
,

Lotr =
LS + (M − 1)LM

M
,

Lptr = LS + (M − 1)LM .
(33)

With these design parameters, the steady-state output current
ripple, the output small-signal model, per-phase current ripple,
and per-phase small-signal model of the multiphase coupled
inductor, working in continuous-conduction-mode, can be
rapidly estimated by applying them in the standard equations
for a single-phase buck converter with the same duty ratio D
and the same switching frequency f . Note that Loss, Lpss,
Lotr and Lptr are related by Γ, γ and M : Lotr/Loss = Γ,
Lptr/Lpss = γ, Lptr/Lotr = M and Lptr = Ll.

These effective inductance values are also derived below
based on the inductance-dual model, for reference and to
demonstrate the equivalance of the models.

A. Effective Overall Steady-State Inductance (Loss)

The effective overall steady-state inductance can be used to
predict the effective output current ripple of the multiphase
buck converter as if the multiphase coupled inductor is one
single discrete inductor (Fig. 43). In a M phase coupled
inductor buck converter with VIN as the input voltage, an
arbitrary duty ratio k

M ≤ D < k+1
M , and VOUT = DVIN as

the output voltage, the derivative of the overall output current
is the summation of the derivative of the current of all phases:

dio
dt

=
di1
dt

+
di2
dt

+ ...+
diM
dt

. (34)
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• During k
M T < t < DT , the overall current ramps up.

There are always k+1 inductors which have VIN−VOUT
across them, and M−k−1 inductors which have −VOUT
across them for an on period (D− k

M )T . The {k+ 1}th
inductor has VIN − VOUT across it.

• During DT < t < k+1
M T , the overall current ramps down.

There are always i inductors which have VIN − VOUT
across them, and M − k inductors which have −VOUT
across them for an off period (k+1

M −D)T . The {k+1}th
inductor has −VOUT across it.

Substituting Eq. (34) into Eq. (7), we find that the current
ripple during the ramp up and ramp down period are:

∆iupo =
(RL +MRC)(k + 1 −DM)(DM − k)

DMN2
VOUTT, (35)

∆idowno = − (RL +MRC)(k + 1 −DM)(DM − k)

DMN2
VOUTT.

(36)
Note that in steady-state, ∆isso = ∆iupo = −∆idowno =

VOUT
Lss

(1−D)T . A single phase inductor with the same ripple
would have a value

Loss =
N2

RL +MRC︸ ︷︷ ︸
Lptr

× (1 −D)DM

(k + 1 −DM)(DM − k)︸ ︷︷ ︸
1/δ

. (37)

for an M phase coupled buck converter with k
M ≤ D < k+1

M .
Here Lptr = N2

RL+MRC
is the equivalent inductance of the

side leg of the coupled inductor as if the center leg is evenly
divided into M pieces. It is also the per-phase transient in-
ductance as will be derived. Appendix II introduced a method
to measure Lptr. δ = (k+1−DM)(DM−k)

(1−D)DM is the normalized
ripple amplitude of an uncoupled interleaved M -phase buck
converter with duty ratio D (Fig. 23) [52]–[55].

For an M -phase coupled inductor buck converter operating
in continous conduction mode with duty ratio D, switching
period T , and output voltage VOUT , the peak-to-peak ripple
of the overall output current is a simple function of Loss:

∆io =
VOUT (1 −D)T

Loss
. (38)

B. Effective Per-Phase Steady-State Inductance (Lpss)

If k
M ≤ D < k+1

M , during the 0 < t < DT period, for each
phase, there are k + 1 numbers of (D − k

M )T sub-periods,
in which k + 1 phases have VIN − VOUT across them, and
M − k − 1 phases have −VOUT across them. The per-phase
current ramps up. The current ripple in each winding during
the k + 1 numbers of (D − k

M )T sub-periods is:

∆iupp = ((RL + RC + kRC)
1 −D

D
− (M − k − 1)RC)

× (D − k

M
)
(k + 1)TVOUT

N2
.

(39)

During the k numbers of (k+1
M −D)T subperiods, k phases

have VIN−VOUT across them, and M−k phases have −VOUT
across them. The per-phase current ramps down. The current

𝒈𝟏

𝒈𝟐
𝒈𝟑

𝒈𝟒

𝜟𝒊𝒐 =
𝑽𝑰𝑵
𝑳𝒐𝒕𝒓

𝜟𝑫𝑻

𝛥𝑖𝑝 =
𝑉𝐼𝑁
𝐿𝑝𝑡𝑟

𝛥𝐷𝑇

𝒊𝒐

𝑻
𝑫𝟏 + 𝚫𝐃

𝑳𝒐𝒕𝒓

𝑳𝒑𝒕𝒓

𝑫𝟐 + 𝚫𝐃 𝑫𝟑 + 𝚫𝐃 𝑫𝟒 + 𝚫𝐃

𝒊𝟏

Fig. 44. Effective overall transient inductance (Lotr) and effective per-phase
transient inductance (Lptr) of the multiphase coupled inductor.

ripple in each phase during the k numbers of (k+1
M − D)T

subperiod is:

∆idownp = ((RL + RC + (k − 1)RC)
1 −D

D
− (M − k)RC)

× (
k + 1

M
−D)

kTVOUT
N2

.

(40)

The current ripple in each phase is the summation of all the
ramp up and ramp down sub-periods:

∆issp = ∆iupp + ∆idownp =

TVOUT
N2

(−k
2RC

DM
− kRC
DM

−DRL −DMRC + 2kRC + RL + RC).

(41)

We define Lpss as the effective inductance of each winding in
steady-state ∆issp = VOUT

Lpss
(1−D)T :

Lpss =
N2(1 −D)

− k2RC
DM

− kRC
DM

+ 2kRC −DMRC + RC −DRL + RL
.

(42)
For an M -phase coupled inductor buck converter operating

in continuous conduction mode with duty ratio D, switching
period T , and output voltage VOUT , the peak-to-peak current
ripple of the per-phase winding current is:

∆ip =
VOUT (1 −D)T

Lpss
. (43)

C. Effective Overall Transient Inductance (Lotr)

The transient inductance determines the response of io
to a small perturbation in D. For a buck converter with a
discrete inductor, the ramp up slope of the inductor current
is dio

dt up
= VIN−VOUT

L , the ramp down slope of the inductor
current is dio

dt down
= −VOUT

L . If there is a small perturbation
∆D, io will ramp up VIN−VOUT

L ∆DT more, and will ramp
down VOUT

L ∆DT less. As a result, the perturbation in the
inductor current is the summation of them, which is VIN

L ∆DT .
In other words, the transient inductance of a single-phase
uncoupled buck converter with L is still L. For an M phase
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coupled inductor buck converter, if k
M ≤ D < k+1

M , the ramp
up and ramp down rates are:

ditr−upo

dt
=

(RL +MRC)(k + 1 −DM)

DN2
VOUT , (44)

ditr−downo

dt
=

(RL +MRC)(k −DM)

DN2
VOUT . (45)

Note that there are M ripple cycles within a switching pe-
riod T . A perturbation ∆D results in a perturbation of (

diupo
dt −

didowno

dt )MT∆D, which equals (RL+MRC)
N2 VINMT∆D in the

overall output current. Since

∆itro =
VIN
Lotr

∆DT =
(RL +MRC)

N2
VINM∆DT, (46)

the effective overall transient inductance of a M phase coupled
inductor, regardless of the duty ratio D, is:

Lotr =
N2

M(RL +MRC)
. (47)

Lotr is effectively connecting M discrete inductors, each of
reluctance value RL +MRC in parallel.

D. Effective Per-Phase Transient Inductance (Lptr)

Since the current equally distribute among the M parallel
windings, with a purtubation of ∆D in the duty ratio, the
perturbation of the current in each winding is 1

M of the overall
current perturbation. As a result:

VIN
Ltrw

∆DT = M
(RL +MRC)

N2
VIN∆DT × 1

M
. (48)

The effective per-phase transient inductance of a M phase
coupled inductor, regardless of the duty ratio D, is:

Lptr =
N2

RL +MRC
. (49)

APPENDIX II: MODEL PARAMETER EXTRACTION

This Appendix introduces a method to extract parameters
for the inductance-dual model from impedance measurements.
By connecting an N -turn winding to one of the side legs and
measuring the inductance, we can measure the self inductance
(LS) of one winding:

LS = Lµ + Ll = N2 RL + (M − 1)RC
RL(RL +MRC)

. (50)

By connecting all windings in parallel, we can measure the
overall transient inductance (Lotr) of the coupled inductor:

Lotr =
Ll
M

=
N2

M(RL +MRC)
. (51)

RL and RC can be found experimentally from the measured
LS , Lotr, and the known values of N and M :

RL =
N2(M − 1)

M(LS − Lotr)
, (52)

RC =
N2(LS −MLotr)

M2Lotr(LS − Lotr)
. (53)
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