

Design Methodologies for High Frequency Multiwinding Magnetics: from Fundamental Principles to Design Tools

Minjie Chen

Assistant Professor Princeton University Design Methodology Webinar Series, 2021

Design Methodology Webinar Series, 2021

Princeton Power Electronics Lab

Princeton Power Electronics Research Group

Research Sponsors and Collaborators

□ Major breakthroughs in power semiconductor devices

PewerSoc

SiC modules

GaN switches

IGBT modules

Packaging & cooling

Magnetics are lagging behind (both discrete and integrated)

• C. R. Sullivan, M. Chen, "Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete and Integrated," IEEE Custom Integrated Circuits Conference (CICC), 2021 (accepted).

PRINCETON UNIVERSITY

Energy Density vs. Functionality

- Capacitors win in energy / power density
- Magnetic components win in functionality / flexibility
- Larger magnetics offer higher power density
- Small & multifunctional magnetics → high frequency & multiwinding

f scaling factor

The "integrated magnetic" concept is not new...

Need design methods and tools for "integrated" magnetics at HF

Two Types of "Integrated" Magnetics

Outline

Design methodologies for parallel coupled structure (ladder core)

Machine learning based magnetic core loss modeling methods

Design Multiwinding Planar Magnetics

2. What are the optimal winding stack and winding spacing?

Thin Middle Spacing Thick Middle Spacing

3. Multi-object optimization space

- 1) Interleaving options?
- 2) Materials?
- 3) Geometry?
- 4) Size?
- 5) Efficiency?
- 6) Coupling coefficient?

0.25

0.00

PRINCETON

UNIVERSITY

Every model starts from assumptions ...

(2) 1-D assumption

- Fields vary only along the thickness direction.
- Applicable when the flux is guided by the magnetic core.

Magnetic core guides the flux

Skin and proximity effects change current distribution

Wave Propagation in Planar Windings

□ 1-D energy wave propagation method (Poynting vector)

□ Modular lumped circuit models for repeating building blocks

Modeling a Single Conductor Layer

Field diffusion equations:

$$H_X(z) = \frac{H_T \sinh(\Psi z) + H_B \sinh(\Psi (h - z))}{\sinh(\Psi h)}$$

Ampere's law:
$$\Psi = \frac{1+j}{j} \quad \delta = \sqrt{\frac{2}{j}}$$

 $\nabla \times H = J = \sigma E$

E field as a function of H and K:

$$\begin{cases} E_T = E_Y(h) = \frac{\Psi}{\sigma} \left(\frac{H_T e^{\Psi h} - H_B}{e^{\Psi h} - e^{-\Psi h}} - \frac{H_B - H_T e^{-\Psi h}}{e^{\Psi h} - e^{-\Psi h}} \right) & \mathbf{Z}_a = \frac{\Psi(\mathbf{1} - \mathbf{e}^{-\Psi h})}{\sigma(\mathbf{1} + e^{-\Psi h})} \\ E_B = E_Y(0) = \frac{\Psi}{\sigma} \left(\frac{H_T - H_B e^{-\Psi h}}{e^{\Psi h} - e^{-\Psi h}} - \frac{H_B e^{\Psi h} - H_T}{e^{\Psi h} - e^{-\Psi h}} \right) & \mathbf{Z}_b = \frac{2\Psi e^{-\Psi h}}{\sigma(\mathbf{1} - e^{-2\Psi h})} \end{cases}$$

KVL/KCL relationships: V/m Ω A/m

$$\begin{cases} \boldsymbol{E}_T = \boldsymbol{Z}_a \boldsymbol{H}_T + \boldsymbol{Z}_b \boldsymbol{K} & \text{KVL} \\ \boldsymbol{E}_B = \boldsymbol{Z}_b \boldsymbol{K} - \boldsymbol{Z}_a \boldsymbol{H}_B & \text{KVL} \\ \boldsymbol{K} = \boldsymbol{H}_T - \boldsymbol{H}_B & \text{KCL} \end{cases}$$

Electromagnetic Fields

 Z_a, Z_b : impedances ~ unit (Ω)

Modeling Two Adjacent Layers

Intuition:

- Two three-terminal networks
- Connected by the H field between them

Faraday's Law and Field Continuity

$$E_{B1}d - V_1 = -\frac{d\Phi_{B1}}{dt} \quad E_{T2}d - V_2 = -\frac{d\Phi_{T2}}{dt}$$
$$\frac{d\Phi_{T2}}{dt} = \frac{d\Phi_{B1}}{dt} + \frac{d\Phi_A}{dt}$$

Flux Linking Two Layers:

An additional KVL equation

$$j\omega\mu_0 a_1 H_{S12} = \frac{V_2}{d} - E_{T2} - \frac{V_1}{d} + E_{B1}$$

$$\Omega \quad A/m \quad V/m$$

Modeling Layers with Multiple Turns

Fields distributions in multiple-turns layers are linearly related to those in single-turn layers

Multiple turns → Additional Linear Conversions

Modeling Electrical Interconnects (Vias)

Modeling vias is equivalent to adding KVL, KCL constraints:

Layer i and Layer j in series Layer k and Layer l in parallel

$$\begin{cases} V_i + V_j = V_a \\ V_k = V_l = V_b \end{cases} \begin{cases} I_i = I_j = I_a \\ I_k + I_l = I_b \end{cases}$$

Connect the layer ports in the same pattern as they are in the real circuit

PRINCETON

UNIVERSITY

An Open-Source SPICE Modeling Tool

Impacts of Interleaving Patterns

Comparing the P_{ac} and E_{ac} of three 1:1 transformers with three different interleaving patterns

Interleaving has to be done in the right way !!!

Minjie Chen – Princeton University

[M. Chen et al., TPEL'16]

MIMO Energy Balancer for DPP

Minjie Chen – Princeton University

[P. Wang, M. Chen et al., TPEL'21]

Power Flow Control of Multi-Active-Bridge VINIVERSITY

Ultra Efficient DPP System

Minjie Chen – Princeton University

[P. Wang, M. Chen et al., TPEL'21]

MIMO Reconfigurable Energy Router

Minjie Chen – Princeton University

[Y. Chen, M. Chen et al., TPEL'20]

Outline

Design methodologies for series coupled structure (planar core)

Design methodologies for parallel coupled structure (ladder core)

Machine learning based magnetic core loss modeling methods

Circuit Models for Mathematical Modeling PRINCETON UNIVERSITY

Current Equalizing Transformer Model

Voltage Equalizing Transformer Model

Minjie Chen – Princeton University

Circuit Models for Physical Design

Principles of Inductance Dual Model

- Through variable: Flux (Φ)
- Cross variable: MMF (Ni)
- Element value: Reluctance (R)
- Energy storage: $E = \frac{1}{2}R\Phi^2$
- Power: $MMF \frac{d\Phi}{dt}$ or $R\Phi \frac{d\Phi}{dt}$

- Through variable: Current (I)
- Cross variable: Voltage (V)
- Element value: Inductance (L)
- Energy storage: $E = \frac{1}{2}LI^2$
- Power: VI

Simulate for Core Loss and Flux Density

VM

Advantage:

- Simple
- Intuitive
- No coupling relationships
- Explicit design equations
- Capability of capturing core loss
- Visualizing flux distribution

Inductance Dual Model

Inductance Dual Model with Core Loss

VM-1

V2

Minjie Chen – Princeton University

Minjie Chen – Princeton University

Unified Design Methods for CoupL

Minjie Chen – Princeton University

Princeton Coupled Magnetics Design Tool VINIVERSITY

Unifies the design equations for multiphase coupled inductors for different models

http://www.princeton.edu/~minjie/coupL/coupL.html

Minjie Chen – Princeton University

CPU Power Delivery Challenge

High Voltage Conversion Ratio

• 48 V: 1 V is the future standard

High Output Current

Approaching 1000 A

Fast Transient Response

• Over 5 A/ns

Extreme Power Density

• >100 A/cm2

Extreme Efficiency Target

• >95% peak; >80% full load

Collaborators

 J. Baek, M. Chen et al., "LEGO-PoL: A 48V-1.5V 300A Merged-Two-Stage Hybrid Converter for Ultra-High-Current Microprocessors," APEC 2020.

Nvidia Tesla A100

Nvidia A100 AI Server

Hybrid Converter with Coupled Magnetics VINIVERSITY

LEGO-PoL Architecture

Sophisticated design space

- Side leg area
- Center leg area
- Winding area
- Plate thickness
- 2D layout
- 3D structure

Optimization targets

- Smallest leakage inductance
- Largest magnetizing inductance
- Lowest loss
- Smallest size
- Sufficient saturation margin

Magnetic in Circuit Analysis

Minjie Chen – Princeton University

[J. Baek, M. Chen et al., APEC'20]

Vertical Magnetics Optimization

Min Loss: 1.4231W at h=5.5mm, A_{leg} =12.25mm²

Minjie Chen – Princeton University

[J. Baek, M. Chen et al., APEC'20]

Other High Performance PoL Designs

• Y. Chen, M. Chen et al., "Two-Stage 48V-1V Hybrid Switched-Capacitor Point-of-Load Converter with 24V Intermediate Bus," *COMPEL 2020.* [Best Paper Award]

Outline

Design methodologies for series coupled structure (planar core)

Design methodologies for parallel coupled structure (ladder core)

Machine Learning for Core Loss Modeling VINIVERS

Generalized Steinmetz Equation (GSE) three parameters, sine wave k, α, β $P_{\mathbf{v}} = k f^{\alpha} \hat{B}^{\beta}$ □ Improved GSE (iGSE) three parameters, non-sine wave $P_{\rm v} = \frac{1}{T} \int_0^T k_i \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} (\Delta B)^{\beta - \alpha} \,\mathrm{d}t$ k_i, α, β eight parameters, non-sine wave □ Improved – improved GSE (i²GSE) $P_{\rm v} = \frac{1}{T} \int_0^T k_i \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} (\Delta B)^{\beta - \alpha} \mathrm{d}t + \sum_{i=1}^n Q_{\rm rl} P_{\rm rl} \quad k_i, \, \alpha, \, \beta, \, \alpha_r, \, \beta_r, \, \mathbf{k}_r, \, \tau, \, q_r$ lots of parameters automatically trained Machine Learning based Methods core loss Waveform1 Waveform2 Waveform3 dc bias, temperature, memory effect, minor loops neural network

MagNet: ML for Core Loss Modeling

Minjie Chen – Princeton University

Github: https://github.com/minjiechen/MagNet

□ Supervised learning: use ML to replace existing design steps

Limitation: constrained by existing knowledge on magnetic core loss

Unsupervised learning: end-to-end fully autonomous ML

Limitation: all information hidden, hard to interpret the results

Machine Learning Examples

Minjie Chen – Princeton University

[H. Li, M. Chen et al., COMPEL'20]

Minjie Chen – Princeton University

[H. Li, M. Chen et al., COMPEL'20]

Overall Machine Learning Architecture

Impacts of DC Bias on Core Loss

Minjie Chen – Princeton University

[H. Li, M. Chen et al., COMPEL'20]

Core Loss Prediction with DC Bias

Before including the DC bias information: 11.12%

After including the DC bias information by modifying the scalogram: 5.23%

This is just scratching the surface of ML-based core loss modeling methods: dc-bias, temperature, air gap, harmonics, degradation, etc...

[H. Li, M. Chen et al., COMPEL'20]

44

Transfer learning method:

- Train a neural network architecture with data of material A
- Update the neural network parameters with training data of material B
- Test the model accuracy with testing data of material B

Magnetics as Energy Processors

Towards a MIMO Magnetic Energy Processor

A Magnetic Register in 1960s (Memory)

- A 32 x 32 core memory storing 1024 bits of data
- Instead of processing information, we process energy

Emerging Opportunities for More Sophisticated Magnetics

Information Processor

Energy Processor

32 x 32 Magnetic Memory

10-Port MIMO Power Converter

• Series Coupled Multiwinding Magnetics: Design Methodologies

• M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan and D. J. Perreault, "A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics," in *IEEE Transactions on Power Electronics*, vol. 31, no. 1, pp. 560-580, Jan. 2016.

• Series Coupled Multiwinding Magnetics: Applications

- M. Chen, S. Chakraborty and D. J. Perreault, "Multitrack Power Factor Correction Architecture," in *IEEE Transactions on Power Electronics*, vol. 34, no. 3, pp. 2454-2466, March 2019.
- Y. Chen, P. Wang, Y. Elasser and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," in *IEEE Transactions on Power Electronics*, vol. 35, no. 12, pp. 13210-13224, Dec. 2020.
- P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski and M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," in *IEEE Transactions on Power Electronics*, vol. 36, no. 4, pp. 4269-4286, April 2021.
- M. Liu, Y. Chen, Y. Elasser and M. Chen, "Dual Frequency Hierarchical Modular Multilayer Battery Balancer Architecture," in *IEEE Transactions on Power Electronics*, vol. 36, no. 3, pp. 3099-3110, March 2021.

• Parallel Coupled Multiwinding Magnetics : Design Methodologies

- Chen, Minjie; Sullivan, Charles (2020): Unified Models for Multiphase Coupled Inductors. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.12477269.v4
- D. Zhou, Y. Elasser, J. Baek, C. R. Sullivan and M. Chen, "Inductance Dual Model and Control of Multiphase Coupled Inductor Buck Converter," *IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL)*, Aalborg, Denmark, 2020.

Parallel Coupled Multiwinding Magnetics: Applications

- Y. Chen, D. M. Giuliano and M. Chen, "Two-Stage 48V-1V Hybrid Switched-Capacitor Point-of-Load Converter with 24V Intermediate Bus," *IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL)*, Aalborg, Denmark, 2020.
- J. Baek, P. Wang, Y. Elasser, Y. Chen, S. Jiang and M. Chen, "LEGO-PoL: A 48V-1.5V 300A Merged-Two-Stage Hybrid Converter for Ultra-High-Current Microprocessors," *IEEE Applied Power Electronics Conference and Exposition (APEC)*, New Orleans, LA, USA, 2020, pp. 490-497.

Machine Learning Methods for Core Loss Modeling

• H. Li, S. R. Lee, M. Luo, C. R. Sullivan, Y. Chen and M. Chen, "MagNet: A Machine Learning Framework for Magnetic Core Loss Modeling," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020.