

Modeling and Design of Multiwinding Magnetics for High Frequency Power Electronics

Minjie Chen

Assistant Professor

Princeton University

High Frequency Magnetics Workshop, 2020

We Need Better Magnetics

□ Breakthroughs in semiconductor devices (SiC and GaN)

PowerSoc

SiC modules

GaN Switches

IGBT Modules

Power SoC

□ Magnetics are lagging behind

- L. Daniel, "Design of microfabricated inductors", IEEE Trans. Power Electron., 1999
- D.S. Gardner, "Review of on-chip inductor structures with magnetic films", IEEE Trans. Magn., 2009

Energy Density vs. Functionality

Linear scaling factor

- Capacitors win in energy density
- Larger magnetics has better figure-of-merits
- Magnetics win in functionality
- Multi-winding, multi-leg, multi-functional magnetics @ high frequency

Single Purpose Magnetics

Multiwinding Magnetics

Multileg Magnetics

The "integrated magnetics" concept started from 1980s'

Need tools and methods to design for high frequencies

Multi-Winding Magnetics: Two Categories VINIVERSITY

❑ Multiple windings couple to a single magnetic linkage

Multiple windings couple to multiple magnetic linkages

- M. Chen, "A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics," TPEL 2016
- J. Li et al., "Using coupled inductors to enhance transient performance of multi-phase buck converters," APEC 2004

Design Options for Planar Magnetics

2. What are the optimal winding stack and winding spacing?

Thin Middle Spacing Thick Middle Spacing

3. Multi-object optimization problem

- I) Interleaving options?
- 2) Materials?
- 3) Geometry?
- 4) Size?
- 5) Efficiency?
- 6) Coupling coefficient?

Minjie Chen – Princeton University

0.25

0.00

Two Commonly Shared Assumptions

Every model starts from assumptions ...

(2) 1-D assumption

- Fields vary only along the thickness direction.
- Applicable when the flux is guided by the magnetic core.

Magnetic core guides the flux

Skin and proximity effects change current distribution

Wave Propagation in Planar Windings

□ 1-D energy wave (Poynting vector) propagation principles

□ Modular lumped circuit models for repeating building blocks

Minjie Chen – Princeton University

Modeling a Single Conductor Layer

Field diffusion equations:

$$H_X(z) = \frac{H_T \sinh(\Psi z) + H_B \sinh(\Psi (h - z))}{\sinh(\Psi h)}$$

Ampere's law:
$$\Psi = \frac{1+j}{\delta} = \sqrt{\frac{2}{2}}$$

 $\nabla \times H = J = \sigma E$

KVL

E field as a function of H and K:

$$\begin{aligned} E_T &= E_Y(h) = \frac{\Psi}{\sigma} \left(\frac{H_T e^{\Psi h} - H_B}{e^{\Psi h} - e^{-\Psi h}} - \frac{H_B - H_T e^{-\Psi h}}{e^{\Psi h} - e^{-\Psi h}} \right) & Z_a = \frac{\Psi(1 - e^{-\Psi h})}{\sigma(1 + e^{-\Psi h})} \\ E_B &= E_Y(0) = \frac{\Psi}{\sigma} \left(\frac{H_T - H_B e^{-\Psi h}}{e^{\Psi h} - e^{-\Psi h}} - \frac{H_B e^{\Psi h} - H_T}{e^{\Psi h} - e^{-\Psi h}} \right) & Z_b = \frac{2\Psi e^{-\Psi h}}{\sigma(1 - e^{-2\Psi h})} \end{aligned}$$

KVL/KCL relationships: V/m Ω A/m $(E_T = Z_a H_T + Z_b K$

$$E_B = Z_B K - Z_a H_B$$
 KVL

$$K = H_T - H_B$$
 KCL

Electromagnetic Fields

 Z_a, Z_b : impedances ~ unit (Ω)

Modeling Two Adjacent Layers

Intuition:

- Two three-terminal networks
- Connected by the H field between them

Faraday's Law and Field Continuity

$$E_{B1}d - V_1 = -\frac{d\Phi_{B1}}{dt} \quad E_{T2}d - V_2 = -\frac{d\Phi_{T2}}{dt}$$
$$\frac{d\Phi_{T2}}{dt} = \frac{d\Phi_{B1}}{dt} + \frac{d\Phi_A}{dt}$$

Flux Linking Two Layers:

An additional KVL equation

$$j\omega\mu_0 a_1 H_{S12} = \frac{V_2}{d} - E_{T2} - \frac{V_1}{d} + E_{B1}$$

$$\Omega \quad A/m \quad V/m$$

Modeling Layers with Multiple Turns

Fields distributions in multiple-turns layers are linearly related to those in single-turn layers

Multiple turns → Additional Linear Conversions

Modeling Electrical Interconnects (Vias)

Modeling vias is equivalent to adding KVL, KCL constraints:

Layer i and Layer j in series Layer k and Layer l in parallel

Connect the layer ports in the same pattern as they are in the real circuit

An Open-Source SPICE Modeling Tool

Impacts of Interleaving Patterns

Comparing the P_{ac} and E_{ac} of three 1:1 transformers with three different interleaving patterns

Interleaving has to be done in the right way !!!

Multi-Input Multi-Output Power Electronics Systems

Server Racks

Solar Farms

Battery Banks

Power Management for Storage Servers

Magnetics Design

System Integration

Existing DPP Solutions

- E. Candan, P. S. Shenoy and R. C. N. Pilawa-Podgurski, "A Series-Stacked Power Delivery Architecture with Isolated DifferentialPower Conversion for Data Centers," TPEL 2016.
- H. Schmidt and C. Siedle, "The charge equalizer-a new system to extend battery lifetime in photovoltaic systems, UPS and electricvehicles," INTELEC 1993.

Fully-Coupled DPP Architecture

• P. Wang, M. Chen et al., "A 99.7% Efficient 300 W Hard Disk Drive Storage Server with Multiport Ac-Coupled Differential Power Processing (MAC-DPP) Architecture," ECCE 2019

Multiwinding Transformer Design

Transformer saturation requirements: maximum volt-seconds per turn

3D stacked multiwinding transformer with modular planar modeling

Distributed Phase Shift Control

Phase shift determines the power flow

Block diagram of the distributed control

Complete HDD Storage System

Performance of the DPP Architecture

Summary:

- Multiwinding transformer enables ultra high performance DPP
- DPP architecture fits well to large scale modular systems

MIMO Reconfigurable Energy Router

• Y. Chen, M. Chen et al., "LEGO-MIMO Architecture: A Universal Multi-Input Multi-Output (MIMO) Power Converter with Linear Extendable Group Operated (LEGO) Power Bricks," ECCE19.

Lumped Circuit Model for Magnetics

PRINCI UNIVERSITY

Multiple winding coupled to a single flux linkage

Multiple windings coupled to multiple flux linkages

reluctance circuit model

Circuit Models for Coupled Magnetics

Physical Structure

Reluctance Model

Inductance Matrix Model

Multiwinding Transformer Model

Permeance Model & Reluctance Model

 $L_{Lm} =$

 $1/R_{Lm}$

 $L_{Lm-1} =$

 $1/R_{Lm-1}$

Advantage of the Permeance Model

- Simple •
- Intuitive •
- No coupled inductors
- Explicit design equations •
- Capability of capturing core loss

Minjie Chen – Princeton University

$\pm v_l + V_y V_2$ - $+ V_x V_{m-1}$ $+ V_m -$

Permeance Model with Core Loss

Permeance Model for SPICE Simulation

Minjie Chen – Princeton University

D. Zhou et al., "Permeance Model for Programmable Multiphase Coupled Magnetics", COMPEL20, submitted

Hybrid Converter with Coupled Magnetics VINIVERSITY

MIMO Energy Processor

Towards a MIMO Magnetic Energy Processor

A Magnetic Memory in 1960s

- A 32 x 32 core memory storing 1024 bits of data
- Instead of processing information, we process energy

Exciting Opportunities for Power Electronics & Magnetics

Information Processing

Energy Processing

32 x 32 Magnetic Memory10-Port MIMO Power ConverterMore topologies and designs to be investigated!

Acknowledgements

Princeton Power Electronics Research Group

Research Sponsors and Collaborators

References

- L. Daniel et al., "Design of microfabricated inductors", TPEL99.
- D.S. Gardner et al., "Review of on-chip inductor structures with magnetic films", IEEE Trans. Magn., 2009
- M. Chen, "A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics," TPEL16
- J. Li et al., "Using coupled inductors to enhance transient performance of multi-phase buck converters," APEC04
- E. Candan, P. S. Shenoy and R. C. N. Pilawa-Podgurski, "A Series-Stacked Power Delivery Architecture with Isolated Differential Power Conversion for Data Centers," TPEL16.
- M. Liu et al., "A 13.56 MHz Multiport-Wireless-Coupled (MWC) Battery Balancer with High Frequency Online Electrochemical Impedance Spectroscopy," ECCE19.
- H. Schmidt and C. Siedle, "The charge equalizer-a new system to extend battery lifetime in photovoltaic systems, UPS and electric vehicles," INTELEC93.
- P. Wang, M. Chen et al., "A 99.7% Efficient 300 W Hard Disk Drive Storage Server with Multiport Ac-Coupled Differential Power Processing (MAC-DPP) Architecture," ECCE19
- Y. Chen, M. Chen et al., "LEGO-MIMO Architecture: A Universal Multi-Input Multi-Output (MIMO) Power Converter with Linear Extendable Group Operated (LEGO) Power Bricks," ECCE19.
- J. Baek, et al., "LEGO-PoL: A 93.1% 54V-1.5V 300A Merged-Two-Stage Hybrid Converter with a Linear Extendable Group Operated Point-of-Load (LEGO-PoL) Architecture," COMPEL19.