

Power Architecture and Magnetics to Unlock the Potential of WBG Semiconductor Devices

Minjie Chen

Assistant Professor Electrical and Computer Engineering Andlinger Center for Energy and the Environment Princeton University

Princeton Power Electronics Research Lab

Emerging Trends in Power Electronics

Extreme Performance and Complex Functions

Extreme High Density

Very High Efficiency

Extreme Environment

Opportunities - Rapid advances in semiconductors

Challenges - Passive components dominating the size

- > Switching at higher frequencies
- Reduces energy storage requirements
- Reduces passive component size
- L, C values $\propto 1/f$

- Limitations of higher frequencies
- Switching loss
- Core loss
- Material property
- Parasitics

4

Architectures to Unlock the Potential of WBG Devices

- Extreme Performance: Hybrid-Switched-Capacitor Architecture Extreme Performance CPU Voltage Regulators
- Sophisticated Functions: Control of MIMO Power Flow Modeling and Control of Multiport Energy Routers
- Enabling New Applications: Dual Frequency Wireless Power Transfer Compensate for Impedance Variation with Reactance Steering Network

Dual-Band Wireless Power Transfer

CPU Voltage Regulator

MIMO Energy Router

Nvidia 8 x GPU Al Server 230 V_{AC} - 400 V_{DC} - 48 V_{DC} - 1 V_{DC} , >10 kW

Extreme performance 48V-1V PoL

Processor-Level

- High current (>1,000 A/core)
- High conversion ratio (48 V-1 V)
- Fast control bandwidth (>1 A/ns)
- High density (>100 A/cm²)
- High efficiency (>95%)
- Server-Level
- Modular loads (up to 16 GPUs together)
- Core-to-core communications

6

Vertical Power Delivery for Microprocessors

- Power consumption per core as high as 2 kW
- Silicon power density still rapidly growing ...

Process Node/Geometry [nm]

Nvidia Tesla V100 Accelerator – 16 Phase Buck

Traditional PoL Architectures

- Buck Derived Solutions
- High conversion ratio (48:1)
- Narrow ON/OFF
- Low duty ratio
- Poor inductance utilization
- Almost impossible to control

Transformer Based Solutions

- High turns ratio (48:1)
- Complicated dynamics
- Difficult to do current mode control
- Transformer leakage and parasitics
- Lack of magnetics in MHz range

Hybrid Switched-Capacitor-Magnetics Approach

> Energy Density of Capacitors vs. Inductors

- Capacitors are 100x denser than inductors
- Switched capacitor circuit suffers loss and regulation

> Charge Sharing Loss of Switched Caps

- Hybrid inductive and capacitive energy transfer
- Capacitive energy transfer for power density
- Inductive energy transfer for efficiency and regulation
- M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," in *IEEE Transactions on Power Electronics*, vol. 23, no. 2, pp. 841-851, March 2008.

LEGO-PoL: Granular Building Block Approach for PoL

 J. Baek, Y. Elasser, and M. Chen, "3D LEGO-PoL: A 93.3% Efficient 48V-1.5V 450A Merged-Two-Stage Hybrid Switched-Capacitor Converter with 3D Vertical Coupled Inductors," APEC 2021.

PRINCETON

UNIVERSITY

Soft-Charging Operation of SC Circuit

Dynamics of Current Balancing

 J. Baek, Y. Elasser, and M. Chen, "3D LEGO-PoL: A 93.3% Efficient 48V-1.5V 450A Merged-Two-Stage Hybrid Switched-Capacitor Converter with 3D Vertical Coupled Inductors," APEC 2021.

Multiphase Coupled Inductor for Voltage Regulation

Four Phase Vertical Coupled Inductor

 J. Baek, Y. Elasser, and M. Chen, "3D LEGO-PoL: A 93.3% Efficient 48V-1.5V 450A Merged-Two-Stage Hybrid Switched-Capacitor Converter with 3D Vertical Coupled Inductors," APEC 2021.

PRINCETON

UNIVERSITY

• M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," IEEE Transactions on Power Electronics, accepted.

Princeton Coupl O Princeton Coupled Magnetics Design Tool By Princeton Power Electronics Research Lab						
Input Parameters	Duty Ratio (D)		Number of Phases (M)		Number of Turns per Winding $\langle N \rangle$	
Derived Parameters	Interleaving Boosting Inductance $(1/\delta)$		Number of Overlaped Phases (k)		Interleaving Ripple Compression (δ)	
Method Name	Inductance Dual Model		Inductance Matrix Model		Multiwinding Transformer Model	
	\mathcal{R}_L		L _S		L _I	
Design Parameters	\mathcal{R}_{C}		L_M		L_{μ}	
	$eta = rac{\mathcal{R}_C}{\mathcal{R}_L}$		$m{lpha}=-rac{L_M}{L_S}$		$ ho = -rac{L_{\mu}}{L_{l}}$	
Description Matrix	$N^{2} \begin{bmatrix} \frac{di_{1}}{dt} \\ \frac{di_{2}}{dt} \\ \vdots \\ \frac{di_{M}}{dt} \end{bmatrix} = \begin{bmatrix} \mathcal{R}_{L} + \mathcal{R}_{C} & \mathcal{R}_{C} & \dots & \mathcal{R}_{C} \\ \mathcal{R}_{C} & \mathcal{R}_{L} + \mathcal{R}_{C} & \dots & \mathcal{R}_{C} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{R}_{C} & \dots & \mathcal{R}_{C} & \mathcal{R}_{L} + \mathcal{R}_{C} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{M} \end{bmatrix}$		$\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_M \end{bmatrix} = \begin{bmatrix} L_{iS} L_M & \dots & L_M \\ L_M L_S & \dots & L_M \\ \vdots & \vdots & \ddots & \vdots \\ L_M & \dots & L_M & L_S \end{bmatrix} \begin{bmatrix} \frac{di_1}{di} \\ \frac{di_2}{di} \\ \vdots \\ \frac{di_M}{di} \end{bmatrix}$		$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{bmatrix} = \begin{bmatrix} L_{\mu} + L_l & -\frac{1}{M-1}L_{\mu} & \dots & -\frac{1}{M-1}L_{\mu} \\ -\frac{1}{M-1}L_{\mu} & L_{\mu} + L_l & \dots & -\frac{1}{M-1}L_{\mu} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{M-1}L_{\mu} & -\frac{1}{M-1}L_{\mu} & \dots & L_{\mu} + L_l \end{bmatrix} \begin{bmatrix} di_1 \\ di_2 \\ di_2 \\ di_3 \\ di_4 \\ di_4 \end{bmatrix}$	
Lumped Circuit Model	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} \text{Ideal current} \\ \text{equalizing transformer} \\ v_{1} & \underbrace{M_{1}}{M_{2}} \\ v_{2} & \underbrace{M_{1}}{M_{2}} \\ w_{M-1} \\ v_{2} & \underbrace{M_{1}}{M_{2}} \\ w_{M-1} \\ v_{M-1} \\ v_{M$	

• M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," IEEE Transactions on Power Electronics, accepted.

3D Stacked Packaging for Vertical Power Delivery

Performance Summary

780 A, 1 V, 1 A/mm², 1,000 W/in³

780 A, 91.1% Peak Efficiency, 1000 W/in³, 1A/mm²

Alternative Designs for Extreme Efficiency

• Y. Chen, H. Cheng, D. Giuliano, M. Chen, "A 93.7% Efficient 400A 48V-1V Merged-Two-Stage Hybrid Switched-Capacitor Converter with 24V Virtual Intermediate Bus and Coupled Inductors," APEC 2021.

Architectures to Unlock the Potential of WBG Devices

Extreme Performance: Hybrid-Switched-Capacitor Architecture Extreme Performance CPU Voltage Regulators

Sophisticated Functions: Control of MIMO Power Flow Modeling and Control of Multiport Energy Routers

Enabling New Applications: Dual Frequency Wireless Power Transfer Compensate for Impedance Variation with Reactance Steering Network

Dual-Band Wireless Power Transfer

CPU Voltage Regulator

MIMO Energy Router

Large Scale Modular Energy Systems

- MIMO power flow are highly dynamic
- Dynamically allocate power processing capability to different ports?

- Reconfiguration cells
- Sophisticated power flow
- Precise modeling and control

SECTOR STATE

 P. Wang and M. Chen, "Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters," IEEE COMPEL, Padua, Italy, June 2018.

Reconfigurable Multicell MIMO Energy Router

- Granular dc-ac building blocks as the "core"
- Magnetics as a central power processor "memory"
- Manage power in dc-domain instead of ac-domain
- Switch timing is important WBG devices

• Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.

Reconfigurable Multicell MIMO Energy Router

• Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.

- P. Wang and M. Chen, "Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters," IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, 2018, pp. 1-8.
- Y. Chen, P. Wang, H. Li and M. Chen, "Power Flow Control in Multi-Active-Bridge Converters: Theories and Applications,"2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 1500-1507.
- Bhattacharjee, A. K., Kutkut, N., and Batarseh, I. "Review of Multiport Converters for Solar and Energy Storage Integration," IEEE Transactions on Power Electronics, 2007, 34, (2), pp. 1431-1445.

 Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.

• Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.

Operating Condition #1

Switching Frequency: 200 kHz

Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.

Differential Power Processing for Data Storage

• P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski, M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," IEEE Transactions on Power Electronics, April 2021.

Differential Power Processing for Data Storage

• P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski, M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," IEEE Transactions on Power Electronics, April 2021.

Battery Balancer with On-line Impedance Spectroscopy

 M. Liu, Y. Chen, Y. Elasser, M. Chen, "Dual Frequency Hierarchical Modular Multilayer Battery Balancer Architecture," IEEE Transactions on Power Electronics, March 2021.

PRINCETON

UNIVERSITY

MIMO Energy Management for Large Scale Systems

Grid Scale Energy Storage

Solar Photovoltaic

High Power LED Lighting

- > Hardware, software, communication, thermal, algorithm and power co-design.
- Multi-input multi-output power management and grid interface.
- > Efficiency, power density, reliability, cost, thermal.

Architectures to Unlock the Potential of WBG Devices

- Extreme Performance: Hybrid-Switched-Capacitor Architecture Extreme Performance CPU Voltage Regulators
- Sophisticated Functions: Control of MIMO Power Flow Modeling and Control of Multiport Energy Routers
- Enabling New Applications: Dual Frequency Wireless Power Transfer Compensate for Impedance Variation with Reactance Steering Network

Dual-Band Wireless Power Transfer

CPU Voltage Regulator

MIMO Energy Router

kHz wireless power transfer

Higher efficiency Higher power transfer capability Large coil size Low tolerant to misalignment

MHz wireless power transfer

Lower efficiency Lower power transfer capability Small coil size High tolerance to misalignment

Support multiple frequency bands with wide impedance variation

Challenges of HF WPT with Single Switch PAs

- Co-location of multiple receivers induces large impedance variation
- Class-E PAs are sensitive to load impedance variation (resistive and reactive)

Drain voltage of Class-E PAs with impedance/resistance variation

line for parallel connection J

A tunable switched-capacitor matching network

- Compensate for large reactance with small X_L and X_C
- M. Liu, M. Chen, "Dual-Band Wireless Power Transfer with Reactance Steering Network and Reconfigurable Receivers," IEEE Transactions on Power Electronics, Jan. 2020.

Control of the Reactance Steering Network

Merge LF and HF Transmitters, and create mutual advantages

A Dual-Band Multi-Receiver WPT Prototype

Dual Band Operation: 100 kHz and 13.56 MHz Power Rating: 65 W@100 kHz, 65 W@13.56 MHz Input Voltage: 50 V (up to 80 V) Output Voltage: 30 V@100 kHz, 30 V@13.56 MHz Spacing: 2.8 cm distance, up to 3 cm misalignments Coil size: Coil_HF (D=10 cm), Coil_LF (D=20 cm)

Example drain voltage without RSN

2.0

5

Misalignment (cm)

2.5

3.0

M. Liu, M. Chen, "Dual-Band Wireless Power Transfer with Reactance Steering Network and Reconfigurable Receivers," IEEE Transactions on Power Electronics, Jan. 2020.

0.0

0.5

0.60

Decoupled Modulation of the Two Frequency Bands

- Modulating power at 100 kHz
- Maintaining 10 W at 13.56 MHz

- Modulating power at 13.56 MHz
- Maintaining 10 W at 100 kHz

HF WPT Efficiency with "Very" Reactive Load

- RSN significantly improves the HF WPT efficiency with capacitive Xtx.
- RSN sacrifices more loss with very inductive load (due to circulating current).

 M. Liu, M. Chen, "Dual-Band Wireless Power Transfer with Reactance Steering Network and Reconfigurable Receivers," IEEE Transactions on Power Electronics, Jan. 2020.

PRINCETON

UNIVERSITY

Unlock the Potential of WBG Semiconductor Devices

- "Drop and replace" designs only leverage the "efficiency" benefits
- WBG devices enables architectural level innovations, including:
 - Very-small-footprint: more compact packaging and better thermal
 - > Ultra-fast-switching: more precise control and timing, smaller passives
 - Extended-design-space: reusing devices for multiple purposes at HF

MIMO Energy Router

Dual-Band Wireless Power Transfer

CPU Voltage Regulator

48V-1V CPU Voltage Regulator

- J. Beak et al., "Vertical Stacked 48V-1V CPU Voltage Regulator with 91.1% Efficiency, 1 A/mm² Current Density and 1,000 W/in³ Power Density", IEEE Transactions on Power Electronics, in preparation.
- J. Baek, Y. Elasser, and M. Chen, "3D LEGO-PoL: A 93.3% Efficient 48V-1.5V 450A Merged-Two-Stage Hybrid Switched-Capacitor Converter with 3D Vertical Coupled Inductors," APEC 2021.
- M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," IEEE Transactions on Power Electronics, accepted.
- Y. Chen, H. Cheng, D. Giuliano, M. Chen, "A 93.7% Efficient 400A 48V-1V Merged-Two-Stage Hybrid Switched-Capacitor Converter with 24V Virtual Intermediate Bus and Coupled Inductors," APEC 2021.

MIMO Energy Router

- P. Wang and M. Chen, "Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters," IEEE COMPEL, Padua, Italy, June 2018.
- Y. Chen, P. Wang, Y. Elasser, M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, Dec. 2020.
- P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski, M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," IEEE Transactions on Power Electronics, April 2021.

Wireless Power Transfer

