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Abstract—This paper presents an inductance dual model for
designing coupled inductors in multiphase buck converters. The
model is derived as a topological dual of the reluctance model
of a multiphase coupled inductor, yielding an inductance-based
equivalent circuit with simplified equations for evaluating the
transient and steady state performance. The model clearly relates
the magnetic geometry to a lumped circuit model, allowing
visualization of coupling relationships and magnetic flux in
SPICE. The model is conducive to state space and transfer
function analysis. The dynamic equations of the )/ -phase coupled
inductor buck converter are derived. It is revealed that the duty
ratio to output voltage transfer function of a multiphase coupled
inductor buck converter is equivalent to that of a single-phase
buck converter. The inductance dual is leveraged to design a
programmable coupled inductor that modulates the center leg
reluctance to improve the control bandwidth.

Index Terms—inductance dual model, state space model, trans-
fer function, coupled inductor, multiphase buck converter.

I. INTRODUCTION

FUNDAMENTAL challenge of designing multiphase

buck converters for point-of-load applications is to bal-
ance the steady state voltage ripple and transient response
requirements [1]. A larger discrete inductance reduces steady
state ripple at the cost of incurring a slower transient response.
By using coupled inductors with cross-coupled switching, one
can reduce the current ripple while maintaining fast transient
performance. Moreover, magnetic core size and output capac-
itor size can be reduced.

Traditionally, the coupled inductor in a multiphase buck
converter is modeled based on the inductance matrix, a re-
luctance circuit model, or a multiphase coupled transformer
model [2]-[10]. However, the inductance matrix methods often
lead to long and unwieldy design equations; the reluctance
circuit model is cumbersome to simulate, and the multiphase
coupled transformer model cannot provide a straightforward
link between magnetic structure and circuit design.

This paper investigates an inductance dual model for multi-
phase coupled inductors as a topological dual of a traditional
reluctance circuit model. The inductance dual model directly
links the coupled inductor geometry to the lumped circuit
model by way of magnetic reluctance. Simple equations for
effective inductance and current ripple are derived which
provide useful insights to magnetic design. The inductance
dual model is suitable for visualization of flux in sophisticated
coupling relationships using SPICE.

The modelling methods for classical buck converters are
well understood [11]. Multiphase coupled inductor buck cir-
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Fig. 1. Multiphase coupled magnetics with many symmetric windings. This
structure has M = 4 side legs and a center leg with an air gap.

cuits have been studied [12], [13], but these dynamic models
are typically restricted to two phases and are not easily
extensible to an arbitrary number of phases M. We leverage
the inductance dual model to derive the state space model
and transfer function of an M -phase coupled inductor buck
converter. The control equations are expressed in terms of
magnetic reluctance, simultaneously simplifying them and
elucidating the impact of physical core design on dynamic
properties. Moreover, the model reveals that the duty ratio to
output voltage transfer function of a symmetric multiphase
coupled inductor buck converter is a second order system
identical to a single phase buck, with parameters only related
to the leakage inductance but not the magnetizing inductance.

II. PRINCIPLES OF THE INDUCTANCE DUAL MODEL

Fig. 1 shows a multiphase coupled inductor with M = 4
side legs and one shared center leg. Each winding with N
turns is coupled to one leg of the core and the center leg with
reluctance R provides a return path for flux. Fig. 2a shows a
reluctance model of the magnetic core structure for an arbitrary
number of phases. Fig. 2b shows the inductance dual model.
The reluctance and inductance dual models are topological
duals. To simplify the following analysis and derivation, the
reluctance of the top and bottom plates are neglected. All
windings are assumed to have the same number of turns
N, and all legs have identical reluctance R;. However, the
reluctance and inductance dual models can be extended to
describe asymmetric coupling and arbitrary N.

The inductance dual model is a lumped circuit model with
inductors and ideal transformers that can be directly used
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Fig. 2. (a) Reluctance circuit model and (b) inductance dual model of a
multiphase coupled inductor with M windings. The reluctance of the zt"
leg is R, and the reluctance of the center leg is R¢. (¢) Four phase buck
converter with coupled inductor modelled using the inductance dual model.
The center leg reluctance R may or may not be adjustable.

in SPICE simulations [14], [15]. The current through the
inductors in the topological dual is is proportional to flux in
the corresponding core leg. [16], [17]. Therefore, the flux and
voltage in each winding can be simply extracted and used in
existing core loss models, which commonly use Steinmetz’s
equation or its extensions [18]-[20]. The inductance dual
model also has the advantage of avoiding any “invisible” cou-
pling between inductors: the lumped circuit model naturally
describes all coupling relationships. In SPICE simulations, the
ideal transformers in the inductance dual model must work in
DC to model the DC flux in the magnetic core.

The inductance dual model in Fig. 2b leads to a reluctance
matrix Rps« s which describes the relationship between the
derivative of the current in the M windings and the voltage
drop across the M windings:

R x M
;% Re + Re Re e Re v1
7 1 Re Re+Re -+ Re V2
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% Re Re Re + Red Llom
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Traditional methods for modelling coupled inductors typically
use an inductance matrix parameterized by the self inductance
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Fig. 3. Multiwinding transformer model of the structure in Fig. 1 implemented
with an ideal current equalizing transformer (blue), and magnetizing and
leakage inductances. The ideal current equalizing transformer equalizes the
MMF of all windings and forces the sum of the volts-per-turn to be zero.
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Fig. 4. Multiwinding transformer model of the structure in Fig. 1 implemented
with M — 1 voltage equalizing transformers. Each ideal voltage equalizing
transformer equalizes the volt-per-turn of all windings and forces the sum of
MMF of all windings to be the zero.

Lg and mutual inductance L;:

V1 Ls Lu L Z%
V2 Ly Ls L GF
=1 . ) . (2)
UM Ly Ly -+ Ls %
If Rc and Ry are positive scalars, which is the case in

practice, Rps« s is invertible. It may be shown by matching
the elements of (2) with R« M_1 that L, and Lg are

N? N} (Rp + (M — 1)Re)

TR+ 2 ||Re | Re(Re+ MRo)

_NQ(]SIQEQH:RC) N —NQ.’RC
(R + 375 [|R) (Re + 5755]1Re) — RE+ MRLRe
3)
which can also be found from the definition of self and mutual
inductance and Fig. 2. Note L, is negative, indicating that
the phases are negatively coupled. The inductance dual circuit
model is interchangeable with Ry« s, L, and Lyy.

The inductance dual model is also interchangeable with
other models. Figure 3 shows one example implementation of
the multiwinding transformer model by using an ideal current
equalizing transformer [4], [5]. The magnetizing inductance of

Ls

Ly =



each winding is %Lu and the leakage inductance of each
winding is L;. An inductance matrix describes the multiwind-
ing transformer model mathematically. The self inductance of
of this model is L, + L;. The mutual inductance of this model
is —ﬁL#. The turns ratio of the multiwinding transformer
is {N : N : .. : N}. Figure 4 shows another example
implementation of the multiwinding transformer model by
using an ideal voltage equalizing transformer model [8]. This
model comprises M ideal voltage equalizing transformers with
a turns ratio of {(M — 1) :1:...:1} (assuming all windings
have equal number of turns). The magnetizing inductance
reflected on the {M — 1} turn side is 22-1L,,.

Similarly, L; and L, are functions of Ry and R¢ in
the inductance dual model, as well as Lg and Lj,; in the
inductance matrix model:

N2
Li=———=1L M—-1)L 4
L= R MRe s+ ( )L, (C)]
N?(M - 1)Rc

L,= =—(M—1)Ly. )

Re(Re + MRc)

The inductance dual model is conducive to core design since
it is is based on reluctances Ry, and R¢. The L, and L; based
multiwinding transformer model provides insights to controller
design. Section IV reveals that the duty ratio to output voltage
transfer function of an M-phase N-winding buck converter
with a coupled inductor with center leg reluctance R and
side leg reluctance Ry, is equivalent to an M -phase uncou2pled
buck converter with a per-phase inductance of L; = m
or a single phase buck with inductance Li/n.

ITI. MULTIPHASE COUPLED INDUCTOR BUCK DESIGN

Coupled inductors can enhance the performance of multi-
phase buck converters. By coupling the multiple inductors with
a high permeability magnetic core, one can reduce the current
ripple in each phase and also reduce the conduction loss
in switches, windings, and traces. Many methods have been
developed to evaluate the performance of a coupled inductor
design in multiphase buck converters . Based on the inductance
matrix model, [3] predicts that the per-phase current ripple
ratio between uncoupled and coupled cases if the transient
inductances are the same for a two phase buck converter is:

Aicp _ 1 + 1DDa (6)
Ainoncp - 11—«
Here a = %: = _RL - D is the duty ratio. This ripple

ratio is an important figure-of-merit (FOM) for evaluating
coupled inductor design. A smaller ripple ratio is better.
Substituting « into (6), the ripple ratio becomes a function
of Ry, Re, and duty ratio D:

Aig,  (1—D)Rp + (1 —2D)Re
Aiponep (1= D)(Rr +2R¢c)

This equation was generalized in [19] for a M-phase coupled

inductor buck converter with 0 < D < =+ by using a multi-

winding transformer model. Defining p as the ratio between

L, and L; in the multiwinding transformer model (Fig. 4):
L, (M — l)ch

p= = ®)
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The ripple ratio is a function of M, D, Ry and R¢:
W=D (1-D)Ry + (1 — MD)Re )
o 1-D o (1—D)(RL+M.{Rc) ’

Four design parameters were defined in [8] based on the
inductance matrix model for a M -phase coupled inductor buck
converter with 4% < D < 6 where k = 0,.., (M — 1) is
the number of phases overlapping with the current phase.

Aiey

Ainoncp

1) Overall steady-state inductance (L,ss): the multiphase
coupled inductor has the same total output peak-to-peak
current ripple amplitude as a single discrete inductor with
inductance L,s;

2) Per-phase steady-state inductance (L,s): each phase of
the multiphase coupled inductor has the same per-phase
peak-to-peak current ripple amplitude as a single discrete
inductor with inductance Ls;

3) Overall transient inductance (L,¢.): the multiphase cou-
pled inductor behaves as a single discrete inductor with
inductance L, for the purposes of the overall transient
performance and small signal model;

4) Per-phase transient inductance (L,;.): the same as the
overall transient inductance, but normalized on a per-
phase basis.

These parameters are expressed as functions of Lg, Ly,
D, M, and k in [8] based on the inductance matrix model:

(1-D)DM(Lgs + Ly (M — 1))

Loss =
%8 (DM —k)(1+k— DM) °’
o (Ls — Lm)(Ls + (M —1)L)
pss — k(k+1) MD(M—2k—1)+k(k+1) ’
LSJr((M*Qk* 2) + + M(1-D) ) M
Ls+ (M —-1)Ly
Lotr =

M

Lpt'r =Lg + (M — 1)LM

10
The steady-state output current ripple, the output small-signal
model, per-phase current ripple, and per-phase small-signal
model of the multiphase coupled inductor in continuous-
conduction-mode can be rapidly estimated. They are valid
when operating the converter as a single phase buck converter
with the same duty ratio D, the same switching frequency,
and these effective inductance values.
Using (3), Lpsss Lptrs Loss, and Lo, can be expressed as
functions of Ry, R, D, M, and k:

Lo (1-D)DM y N?
"7 (k+1—-DM)DM —k) " Rp + MR’
1/6 Lptr
NZ2(1 - D)
Lypss = B2Ro  kRo )
— 538 — 55 + 2kRe — DMRc + Re — DR + Re,
1 N2
Lotr = — X e,
" T M R+ MRe
———
Lptr
N2
Low = g5 aime = B

an

The per-phase transient inductance L, which is equal to
the leakage inductance L; in the multiwinding transformer
model, is a key parameter in the design process. It is linearly
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Fig. 5. FOM of the multiphase coupled buck inductor as functions of the
number of phases (M), duty ratio (D), and reluctance ratio (8 = R¢/RL).
A lower FOM indicates more winding current ripple reduction. A high 3
indicates strong coupling, and a low 3 indicates weak coupling.

related to the overall steady-state inductance L,ss by an
interleaving factor 1/4. 1/4 quantifies the ripple reduction ratio
if M discrete inductors are operated in interleaving [21], [22].
The overall transient inductance L, is linearly related to Ly,
by a factor 1/M. Only L, is not proportional to L,,,. For a
given volumetric constraint on the coupled inductor, the first
step is to select L, based on the required L,ss and Loy,.
Then, minimize the ratio between Ry and R to maximize
L,ss. By explicitly including Rz, and R¢, (11) offers better
geometric design insights than (10). A good strategy to design
coupled inductors for multiphase buck converter is:

1) Selected a magnetic structure with Ry < R¢;

2) Choose an appropriate per-phase transient inductance
(Lptr) based on the overall transient requirements (L),
and the overall output ripple requirements (L,ss).

3) Determine R;, + MR based on the selected L.

4) Design the magnetic structure (material and geometry)
to minimize Ry, maximize R¢, optimize the loss, and
ensure enough margin to avoid saturation.

We use the equations derived based on the inductance
dual model to define a figure-of-merit (FOM) for better
understanding of the system. We define FOM as the ratio
between the transient and steady-state inductance per-phase:

Lptr o A’icp

Lpss N A'L‘noncp

ERc _ kRe | opR. — DMRe + Re — DRy + Ry
= (12)
(1= D)(Rr + MRc)
_8 _ kB4 okg_ DMB+B—D+1
(1-D)(1+ Mp) '

FOM =

Here § = %. This ratio FOM equals to the per-phase current
ripple ratio AiAA. Figure 5 plots the FOMs of a range of D,

oncp

M, and 8. FOM is always between zero and one. A smaller
FOM is better. If 3 — +o00, Rc > Ry, the inductors are

strongly coupled, the benefits of coupling increase. If 8 — 0,
R < Re, the inductors are weakly coupled. Consequently,
FOM — 1, and the benefits of coupling decrease. A software
tool (coupL) for calculating these parameters is available at:
http://www.princeton.edu/powerlab/coupL/coupL.html.

There are two ways of increasing 8 for a given {Ry +
M®Rc} (which is directly related to Ly, ): 1) reducing Ry; 2)
increasing R. However, R cannot be increased significantly
while retaining the chosen value of Ly, so increasing 3
requires decreasing Ry, which can be achieved by using high
permeability core material, reducing the effective length, or
extending the core area. Tradeoffs exist between core loss,
saturation margin, energy storage requirements, and transient
response. In an optimal design, the core loss, winding loss,
efficiency, power density, and transient and steady-state per-
formance are highly related and need to be jointly optimized
for a given design specification.

In practical designs, there is always parasitic inductance
adding to the leakage inductance L; of the coupled inductor
(Fig. 3 and Fig. 4) of the multiwinding transformer model.
As L; increases, the benefits of coupling diminish. Therefore,
one should design the L; of the coupled inductor resulting
from the center leg and additional leakage inductance from
other sources such as traces and connectors such that their
combination achieves the desired transient performance.

The absolute value of the current ripple per-phase impacts
the loss in the windings and switches. It is another key design
parameter to be minimized:

AZ-phase:
VinDT , k2Rc  kRo
— — —— +2kRc — DMR Rc — DR Rr).
Nz o D T 2kRe c+Reo L+Rp)

(13)
When D = 0.5, M = 1, k = 0, the effective inductance is
Lyss = ﬁ, leading to the worst case inductor current
ripple per-phase:

_ VinT(Re + Ry)

Nimas = o (14)

IV. STATE SPACE MODEL OF THE MULTIPHASE COUPLED
INDUCTOR BUCK CONVERTER

The inductance dual model naturally leads to the derivation
of a state space model for the multiphase coupled inductor
buck converter and its associated transfer functions for an
arbitrary number of phases M. In the following subsections,
we develop the state-space model (IV-A), and use this model
to find the transfer function (IV-B). The result is the same
transfer function that of as a single-phase buck converter,
a result that is also derived directly from circuit models
in subsection IV-C. To simplify the derivations, we restrict
our discussion to symmetric designs (identical reluctance Ry,
winding resistance R,,, number of turns /N for each phase)
without phase overlapping (D < 1/M). This analysis can be
further extended to cover a generalized case with arbitrary D
and phase overlapping.

A. State Space Model of the M-phase Converter

There are M inductors with independent currents and one
capacitor in the system. As a result, there are M + 1 state



variables, yielding a state vector x = [i1, 12, - - -, Tas, v,]T. An
M -phase coupled inductor buck converter has M sub-periods,
each of duration % In the k" sub-period, one phase #k is
connected to V;n for a time DT, where k =1,..., M and D
is the duty cycle. (1) leads to the dynamic equation of each
phase current. For example, for phase #1:

o diy

N — =

7 (R + Re)vr + Revz + -+ -+ Revm

=M

= (:RL -l—iRc)vl + Re Z vj.

Jj=2

15)

Without phase overlapping, D < 1/M. If a phase #k is
connected to Vi, vy = Vin —ik Ry —2,, as shown in Fig. 2c.
Otherwise, v, = —ix Ry, — v,. Taking phase #1 as connected
to Vrn in (15), we obtain a dynamic equation in terms of state
variables only.

j=M
o diy . ! )
E - (:RL + :RC)(VIN - ZlRw - Uo) + :RC ; (7Zij - vo)
j=M
=vo(—Re — MRc) + ir[~Ruw(Re + Ro)] = ReRw Y _ 5
Jj=2

+ Vin(Re + Re).
(16)
By changing indices, (16) can be extended to a general
dynamic equation for any phase k£ = 1, ..., M, depending on
whether that phase is the one that is connected to V;y:

j=M
Uo(—MfRC - fRL) -+ ik[—Rw(Rc -+ RL)] — RyRe Z ’ij
j=1
J#k
o dip + VinN(RL + R¢) phase k on
dt j=M

UO(—MRC — RL) + ik[—Rw(fRC + :RL)] - R’IURC Z Z']'
j=1
i#k
one phase on, not phase k

+Vin(Re) an

Next, the capacitor dynamic equation is obtained from the
sum of all phase currents and the output current through a
resistive load R,:

j=M

dvo_l
dat ~ C

Vo
Li — . 18
. 15 R.C (18)
Jj=1
Equations (17), (18), and the dynamic equations of the other
phases are best represented in matrix form as a set of first-
order differential equations. First, we define matrices A and

U®) as:

—Ry(Rc+RL) —RyReo . —RyRe —MRc—Ryp,
—RyRo —Ry(Re+Rp) - —RyRe —MRc—Rp,
1
A= —— : : : : ,
N2 : : . : :
—RyRe —RyRe - —Ry(Ro4+RL) —MRc—Rp,
21 21 21 2 1
NS NTT NG A e,
(19)
Re row 1
% Re + R row k
gk — VIn 20)
N2 . ’
Re row M
0 row M+1.

where we factor out the coefficient ﬁ for legibility. Note that
the (M +1) x (M +1) A matrix is always the same regardless
of the phase connections. (20) is only valid when phase #k
is connected to V7n and all other phases are connected to
ground; hence, we use a superscript (k). When no phase is
connected to Vi, the U matrix is zero.

To approximate the system dynamics over a full switching
cycle, we average the equations of all switch states over a
period T. This state space averaging technique, described
in [11], is generally valid when the state x varies slowly
compared to the switching frequency. Thus, the proceeding
results are restricted to a frequency range sufficiently low such
that the averaging approximation holds. During one period 7',
the system has state (20) for time DT for k = 1,..., M and
state {J(@ll grounded) — () for the remaining time:

MRc + R
_ MRe + Ry,
glave) — DT XS U Viw : D. (@1
T N2 : :
MRc + R
0
We define a matrix B as:
MRc + Re
MRc + Rr,
B = % : , (22)
MZRc + Re
0

where we assume Vi is constant and treat the duty cycle D
as an input. We can now write the full state space model in
the standard form x = Ax + BD with the averaged matrices
A and B.

Because the A matrix (19) is constant regardless of the
switch configuration, it is independent of duty cycle in the
averaged model. This arises because the state variables see the
same passive network regardless of switch positions. This is
an advantageous property since the internal system dynamics,
such as passive phase current balancing, can be taken as
independent of the duty cycle.

A steady state solution for % 0 can be written as
Xss = —AT'BD if A~! exists. If all the parameters
Ry, Re, Ry, N, C, R, are finite, positive values (as is the case
in a practical circuit), A may be inverted. However, if R,, = 0,
A is singular and a unique solution does not exist. This is
expected, as the winding resistance is the element that restricts
the phase currents to a single solution. For example, for an
M = 4 phase system, the steady state solution is:

. 1
41 Rw-si4Ro
12 L Rw+14RD
Xss = |13 | = —A7'BD = m DV[N. (23)
b4 R.,1AR,
v 4R,
° R, +4R,

This reveals that current sharing is inherently guaranteed in a
symmetric multiphase coupled inductor buck converter if the
winding resistances are well matched.



B. Transfer Function of the M-phase Converter

The duty ratio to output voltage transfer function of a state
space model in standard form is G(s) = C(sI — A)~'B.
Here, C' is the output matrix. To study the duty cycle to output
voltage characteristics, let C' = [0, 0, ..., 1].

The inverse (sI — A)~! is cumbersome to compute for an
unknown M, but the problem is simplified if we assume that
all phase currents are equal. If the structure is symmetric, all
phases have the same reluctance R; and winding resistance
R, so the currents will be equal in state space averaging.
Moreover, each phase has the same dynamic equation and
is affected identically by the duty cycle input. It may be
shown, by leveraging the symmetry of A, that the same
transfer function can be found without assuming equal phase
currents. However, the assumption significantly simplifies the
derivation. So, we assert that

(24)
ip =11 +ia+ - +iy = Miy. (25)
Then, we rewrite equation (16) in terms of total current i7:
NQ%T = Muvo(—Rp — MR¢) 4 ir[—Ruw(Rr + MRc)]
+ MVin(RL + Re).

We follow the same averaging procedure on (26) over a
switching period and combine the dynamic equations into a
reduced order state space model (27) with only two states: the
total current ¢ and the output voltage v,:

(26)

A/
ir] 1 [-Ro(MRc+Re) —M(MRc+Re)] [ir
Uo| N2 N2L -N*3s Vo
ViN |M(MRc + Rp)
+W{ ; }D, =0 1].
B/

@7

The reduced order system has fixed size regardless of M, so
the transfer function may be computed easily. Since we seek
the small signal transfer function, we write (27) in terms of
perturbations of output voltage and duty cycle, v, and d:

G(s) = L(s)=C'(sI — A')'B
d (28)
_ MVinR,
o CLptrRos2 + (Lpt'r‘ + CRwRo)s + (MRO + Rw) '
Here Ly, = L; = hfilil%. (28) is a second order system

regardless of the number of phases, due to the symmetry
assumption. It is identical to a single-phase buck transfer
function. The system bandwidth of (28) is:

" _\/(RL+MRC)(MRO+RU,) _ [MRo + Ry (29)
°T N2CR, \V LpwCR, -

We write the bandwidth in terms of reluctances and induc-
tances, where the first form is useful for physical design.
Assuming MR¢c > Ry and M R, > R,,, which is the case
for many converters depending on load, number of phases, and
reluctances, the bandwidth is approximately:

(MRc)(MR,) M |Re
N2CR, TNV C

~
o =

(30)

That is, the bandwidth is primarily determined by the center
leg reluctance.

In summary, Ly, = L; = % is a critical design
parameter for the multiphase coupled inductor buck converter.
It describes the per-phase transient inductance of the coupled
inductor and is closely related to the output current ripple in
steady-state through L, and the interleaving factor 1/4. It
equals the leakage inductance L; in the multiwinding trans-
former model. If Rc > Ry, Ly, is dominated by R¢. It also
determines the small signal transfer function of the multiphase
buck converter in state-space-averaging. The control to output
transfer function of a M-phase N-turn buck converter with a
coupled inductor whose center leg reluctance is R and side
leg reluctance is Ry, is equivalent to the control to output
transfer function of a M-phase uncg)upled buck converter with

a per-phase inductance L; = RLiV7MRc'

C. Transfer Function Based on Circuit Models

The same insights on control to output transfer function
can also be obtained from Fig. 3 or Fig. 4 to build circuit
intuition. The analysis assumes that the duty cycles for each
phase are identical, and thus the average voltages at nodes v
to vy in Fig. 3 or Fig. 4 are identical to those input terminals
to the coupled inductor are effectively shorted together. Thus,
all the windings are effectively connected in parallel, with all
input terminals connected together and all the output terminals
connected together. We consider the response to a perturbation
to the nominal operating point. With a symmetric model and
identical voltages applied across the windings, the perturbation
currents in all the windings will be identical.

The ideal current equalizing transformer in Fig. 3 (in blue)
must also have equal current in each winding. Thus, one
possible solution is all the winding current flowing through the
ideal transformer, and no current in the magnetizing branches.
Consideration of the voltage relationship shows that it is
the unique, correct solution. If some of the winding current
flowed through the magnetizing branches, the magnetizing
current in each would need to be identical, both by symmetry
and as enforced by the ideal current equalizing transformer.
Producing these equal currents through the magnetizing branch
impedance would require equal voltages across each. The
voltages must sum to zero, so the only valid solution is zero
voltage across and thus zero current through each magnetizing
branch. The voltages at the nodes between the current equaliz-
ing transformer and the leakage inductors are all equal to the
input voltage. Thus, all M leakage inductors are effectively
in parallel, and the averaged control model is identical to that
of a single-phase buck converter with an inductor value L1/M.
The magnetizing inductance L,, has no impact on the dynamic
response.

A similar argument applies to Fig. 4: With equal current
perturbations due to symmetry, the current in the {M — 1}
turn winding of each ideal transformer balances the current in
the other M windings, leaving zero current in the magnetizing
inductance. Thus, all transformer winding voltages are zero.
The voltages at the nodes between the current equalizing
transformer and the leakage inductors (L;) are all equal to the



TABLE I
DESIGN PARAMETERS OF THE PROTOTYPE COUPLED INDUCTOR

Measured Lg 13.62 uH Lotr 574 nH
Extracted Ry, 1,091,625 H"1 | Re 1,166,888 H—1
Calculated Ry 920,693 H—! RE 1,512,460 H—1
Resistance Ry 70.25 mQ2 R, 1.5Q
Inductance Dual Ly, 1.09 uH Lo 662 nH
Multiwind. Xformer L 2.30 uH Ly 11.3 uH
Inductance Matrix Lg 13.62 uH Ly —3.77 uH
Steady-state Loss 4.02 uH Lpss 8.96 uH
Transient Lotr 574 nH Lyptr 2.30 uH

FOM = Lptr/Lpss ||  25.6%. 4x reduction in per-phase current ripple

input voltage, the leakage inductors are effectively in parallel,
and the averaged control model is identical to that of a single-
phase buck converter with an inductor value Zi/ar.

V. EXPERIMENTAL VERIFICATION

To verify and demonstrate the effectiveness of the induc-
tance dual model, a multiphase inductor with programmable
coupling coefficient was designed and fabricated. Fig. 6 shows
a picture of the prototype, the 3D structure, and finite element
modeling of the four-phase coupled inductor. Consider a
typical four phase coupled inductor buck converter where fast
transient response and low current ripple are needed. Equation
(11) shows that L, can be increased by reducing center leg
reluctance R (to reduce current ripple) and L, can be de-
creased by increasing R (to improve transient performance).
This is a fundamental challenge in buck converter design:
higher inductance yields smaller steady state ripple, while
lower inductance results in faster transient response time. A
programmable design that can switch between high and low
R is attractive, such as the one suggested in [23]: a conductor
passes a dc current through the center leg, saturating part of
it and increasing the center leg reluctance to modulate the
transient and steady state performance of the coupled inductor.

A four phase coupled core was designed using a finite ele-
ment modeling tool (ANSYS Maxwell). An auxiliary current
through the center leg is simulated to verify the reluctance
programming behavior. Table I lists the designed and measured
reluctance values. The coupled inductor is included in a 1 MHz
four phase coupled inductor buck converter with 12 V input
voltage, 1.5 V output voltage. Its power rating is 30 W. The
maximum output current is 20 A. Fig. 7 shows the measured
current waveforms of the multiphase buck converter with a
four-phase coupled inductor without programming the core.
The core is made of Ferroxcube 3F4.

Fig. 8 shows the theoretical frequency response of the
converter by using the inductance dual model. A higher R
leads to smaller L, and thus pushes the control bandwidth
to higher frequencies. Fig. 9 shows the measured duty ratio
to output voltage frequency response. The bandwidth of the
system is increased from about 16.1 kHz to 20.1 kHz with
a 4 A auxiliary current in the center leg. Note that the
approximate bandwidth expression (30) predicts a bandwidth
of 18.5 kHz for the system. Based on the bandwidth increase,
Rc has increased to around 2.4 x 105 H~! with the auxiliary
current of 4 A.

g - Winding 2
Winding 3 —= Aux winding
Winding 4 —== Winding 1

Fig. 6. (a) Picture of the prototype four-phase coupled inductor buck converter
with programmable center leg reluctance. The coupled inductor is between
the top and bottom PCBs.(b) ANSYS Maxwell model showing two halves of
magnetic core (gray), four windings (gold), and auxiliary winding (red). (c)
Partial center leg saturation with 1 A auxiliary current in ANSYS simulation.

Tok Run I Jtrig'a

@ 1.00A & 1.004A 100A
Value  Mean  Min Max  std Dev
@ vean 204mA  295m  283m  303m  4.27m us
Mean 99.4mA  103m  922m  117m  4.76m
€D Mean 172mA - 173m  156m  184m  4.34m [wﬂns 2.50Gs/s © 5 1.06A
@ Peak-Peak 2.48A  2.47 2.40 2.56 25.8m M points
@ rpeak-peak 244A 243 236 252 26.0m 16 5ep_2020
€D Peak—Peak 2.44A 245 240 252 24.4m 01:1454

Fig. 7. Measured current waveforms of the 1 MHz, 8§ V-1.5 V four-phase
coupled inductor buck converter. A non-programmable core is used in this
experiment, with different parameters from Table I.

The experimental setup described in this paper is not a
practical programmable coupled inductor system, because the
bandwidth only changes 25% for a substantial auxiliary cur-
rent. One factor which diminishes the change in bandwidth is
the fringing fields, which are not affected by the auxiliary cur-
rent. However, we do achieve the desired behavior of changing
the bandwidth, although the effect is smaller than expected.
Further experiments with different center leg radii will be
conducted that may improve the system programmability. If
a significant bandwidth change is achieved, an example appli-
cation of the circuit would be turning on the auxiliary current
and increasing the control bandwidth when high load variation
is expected, e.g., in microprocessor voltage regulators.

VI. CONCLUSIONS

This paper presents an inductance dual model for the design
and simulation of multiphase coupled inductor buck convert-
ers. The inductance dual model links the physical magnetic
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Fig. 8. Theoretical duty ratio to output voltage frequency response of four-
phase coupled inductor from derivation in section IV-B. The bandwidth is
increased for increasing center leg reluctance.
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Fig. 9. Measured duty ratio to output voltage frequency response of four-
phase coupled inductor buck with and without 4 A auxiliary winding current.
The bandwidth, taken at —90° phase, is increased from 16.1 kHz to 20.1 kHz
with the auxiliary current on and center leg saturated.

structure to electrical behavior of the magnetic components
in circuits. In SPICE, the model is suitable for visualization
of multiphase coupling interactions. A set of equations are
derived for predicting the effective inductance and current
ripple. These equations are functionally identical to existing
models but offer additional insight for physical design. The
inductance dual model is used to derive the state space model
and transfer function of a multiphase coupled inductor buck
converter with an arbitrary number of phases in a symmetric
magnetic structure. The transfer function is shown to be identi-
cal to an M -phase uncoupled buck or a single phase buck with
appropriate inductances. The effectiveness of the inductance
model is demonstrated by designing a programmable inductor
for improved transient response.
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