

A "Reverse-Feeding" Hold-up Time Strategy for Two-Stage Grid-Interface PFC with a Rectifier-Coupled Boost Inductor

Jaeil Baek¹, Gun-Woo Moon², and Minjie Chen¹

¹Princeton University, ²KAIST

Note: This work was started at KAIST and completed at Princeton University

Two-stage grid-interface PFC architecture

22
22 Juni 10

Needed in a wide range of applications

• Data-center / Transportation / Industrial applications

[*Two-stage grid-interface PFC*]

Design targets

- High efficiency / high power density
- High power quality
- Hold-up time requirement

- PFC stage

 \rightarrow High power quality, V_B regulation

- DC/DC stage
	- \rightarrow Isolation, V_{α} regulation

Dr. Jovanovic's contribution to PFC applications

A wide range of contribution to power electronics field

Hold-up time requirement in PFC

[*Operations and waveforms of PFC during hold-up time*]

• The HUT requirement set the limit for efficiency & energy buffer capacitor size

Methods for extending the hold-up time

Larger C_{β} \rightarrow Lower power density

RINCETON UNIVERSITY Wider range \rightarrow Lower peak efficiency

Dr. Jovanovic's hold-up time contribution

Hold-up Time Extension Circuit

RINCETON UNIVERSITY

[*Dr. Jovanovic's hold-up time compensation circuit [8]*]

- Use a HUT extension circuit to reduce the dc-dc operation range
- Loss of $D_{\rm A}$ in normal mode, large size of hold-up time extension circuit

Reverse-feeding strategy for two-stage PFC

7

Conventional strategy Reverse-feeding strategy Energy Buffer (C_B) Output (V_O) Energy Buffer (C_B) Output (V_O) **DC-DC Stage definition is a contract to the property of the pC-DC Stage** peo peo **PFC Stage (Inactive)PFC Stage** • Forward feeding

 $: C_{\beta} \rightarrow$ DC-DC Stage $\rightarrow V_{\alpha}$

- Two-way feedings
	- $-$ Forward: $C_B \rightarrow$ DC-DC Stage $\rightarrow V_O$
	- $\mathsf{P} \cdot \mathsf{Reverse} : C_B \rightarrow \mathsf{PFC}$ Stage $\rightarrow V_O$

Advantages of reverse-feeding strategy

Normal mode operation Hold-up time operation

- 1. Reusing the inactivated PFC stage **Extended hold-up time**
- 2. Easier DC/DC stage design like DCX transformer

Improved peak efficiency in normal mode

3. Wider operation range \rightarrow **Reduced buffer capacitor size**

Embodiments of reverse-feeding strategy

Applicable to a variety of PFC & DC/DC topologies

Design example of a reverse-feeding PFC

800W server power supply (100-240 V_{RMS} , 12V/66.7A)

Operational circuits – Two operation modes

Normal operation During HUT

Normal mode $\rightarrow Q_{A} \& Q_{F}$ OFF

PRINCETON UNIVERSITY

Boost PFC + PSFB \rightarrow V_O regulation

- Hold-up time $\rightarrow Q_{A}$ ON, Q_{F} control
- PSFB + HB forward \rightarrow V_O regulation

Longer hold-up time & Higher efficiency

- Additional voltage gain of reverse feeding
	- \rightarrow Longer hold-up time

RINCETON UNIVERSITY

→ Narrower operation range design of PSFB

- Narrow operation range design of PSFB
	- **→** Lower primary conduction loss

Wide V_B Range Design Narrow V_B Range Design

Freewheeling Current

 V_B : Input voltage of PSFB

→ Lower output inductor core loss

V_B/n_{PSFB} **V**out

D Lower snubber loss

Modified 800W server power supply prototype

ieee energy conversion congress

Rectifier-Coupled Inductor

Same size of rectifier-coupled boost inductor

KAIST

PRINCETON

UNIVERSITY

- Smaller size of buffer capacitor (25% size reduction)
- Higher peak system efficiency in normal mode (95% -> 96%)

Conventional Inductor N_A : 1.2 Φ , 72 turns

Rectifier-Coupled Boost Inductor N_A : 1.1 Φ , 72 turns N_B : 0.05 $\Phi \times 320$, 8 turns

810µF $(42.411cm³)$

560µF $(31.809cm³)$

Control block diagram of prototype

PRINCETON UNIVERSITY

- **1. Conventional method :** $Q_B \& Q_S \rightarrow$ **Always boost PFC operation**
- 2. Reverse-feeding strategy : $Q_B \& Q_S \rightarrow$ Half-bridge forward operation (hold-up time)

Measured waveforms in normal mode

- Wide operation range design (320V-400V)
- High circulating current

PRINCETON UNIVERSITY

• High inductor core loss, High voltage stress

[*Conventional PSFB converter*] [*PSFB converter with reverse-feeding*]

- Narrow operation range design (380V-400V)
- Lower circulating current
- Lower core loss, Lower voltage stress

System efficiency in normal mode

• Peak efficiency : 94.8% @ 115V_{RMS} (+0.59%), 96.5% @ 230V_{RMS} (+0.63%)

Normal mode loss analysis

- Similar boost PFC converter efficiency, Higher efficiency PSFB converter
- Reverse-feeding \rightarrow Higher system efficiency in universal line

Measured hold-up time

KAIS

RINCETON

UNIVERSITY

[*Conventional PSFB converter, n_{PSFB}=23:1*] [*PSFB converter with reverse-feeding, n_{PSFB}=28:1*]

- Conventional forward feeding: 400V-320V \rightarrow PSFB operation (36ms hold-up time)
- Reverse feeding : (1) 400V-380V \rightarrow PSFB, (2) 380V-250V \rightarrow HB Forward + PSFB

(47% longer hold-up time with the same buffer capacitor)

Summary

- Reverse-feeding strategy for two-stage gridinterface PFC applications
	- 1. Inactivated PFC stage \rightarrow Reverse feeding
	- 2. Easier DC/DC stage design (DCX transformer)
	- 3. Wider operation range during hold-up time
- Applicable to a variety of PFC and DC/DC topologies
- Design example : 800W server power supply
- 96.5% (+0.63%) peak efficiency at $230V_{RMS}$
- 25% size reduction of buffer capacitor or 25% hold-up time extension

References

- 1. Y. Jang, M. M. Jovanovic, K. H. Fan, and Y. M. Chang, "High-Power-Factor Soft-Switched Boost Converter," *IEEE Transactions on Power Electronics*, vol.21, no.1, pp. 98-104, January 2006.
- 2. Y. Jang and M. M. Jovanovic, "A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization ," *IEEE Transactions on Power Electronics*, vol.24, no.1, pp. 85-93, January 2009.
- 3. L. Huber, Y. Jang, and M. M. Jovanovic, "Performance Evaluation of Bridgeless PFC Boost Rectifier," *IEEE Transactions on Power Electronics*, vol.23, no.3, pp. 1381-1390, May 2008.
- 4. M. M. Jovanovic, Y. Jang, "State-of-the-Art, Single-Phase, Active Power-Factor-Correction Techniques for High-Power Applications-An Overview," *IEEE Transactions on Power Electronics*, vol.52, no.3, pp. 701-708, June 2005.
- 5. L. Huber, B. T. Irving, M. M. Jovanovic, "Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converter," IEEE Transactions on Power Electronics, vol.24, no.2, pp. 339-347, February 2009.
- 6. J. Zhang, J. Shao, P. Xu, F. C. Lee, and M. M. Jovanovic, "Evaluation of Input Current in the Critical Mode Boost PFC Converter for Distributed Power Systems," *IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, 2001, pp. 130-136.*
- 7. L. Huber, B. T. Irving, and M. M. Jovanovic, "Review and Stability Analysis of PLL-Based Interleaving Control of DCM/CCM Boundary Boost PFC Converters, " IEEE Transactions on Power Electronics, vol.24, no.8, pp. 1992-1999, August 2009.
- 8. Y. Jang, M. M. Jovanovic, and D. L. Dillman, "Hold-up Time Extension Circuit With Integrated Magnetics," IEEE Transactions on Power Electronics, vol.21, no.2, pp. 394-340, March 2006.

