

A 13.56 MHz Multiport-Ac-Coupled (MAC) Battery Balancer with High Frequency Online Electrochemical Impedance Spectroscopy

Ming Liu, Ping Wang, Yueshi Guan, Minjie Chen Princeton University

Battery pack and cells balancer

Battery pack

- High output voltage and power capacity
- Different state of health (SOH) of cells
- Imbalanced state of charge (SOC) of cells

Shorter life-cycle and reduced capacity

Battery pack

Electrochemical Impedance Spectroscopy (EIS)

An example EIS Nyquist plot

Electrochemical Impedance Spectroscopy

- Battery state of charge (SOC) estimation
- Battery state of health (SOH) estimation
 - Extra perturbation generation circuitry

Existing battery balancer topologies

- Balance any two cells only through one dc-ac-dc conversion stage
- Offer reduced power conversion stress and low component count

Multi-MHz MAC battery balancer

UNIVERSITY

Benefits of the MHz MAC balancer

- Implement HF EIS without extra perturbation circuitry
- Reduce coil size and eliminate bulky magnetic core
- Easily integrated with cells to reduce wire impedance

and achieve high frequency battery EIS measurement

Multi-active Class D MHz MAC converter

- High performance at multi-MHz
- Easy to drive and control at MHz
- Current-mode phase shift modulation

Design of Active CM Class D converter

UNIVERSITY

High L_r/L_t, high switch voltage stress

Control of the multi-way power flow

Simplified lumped circuit model

NIVERSITY

The impedance matrix of the MAC transformer is

$$\blacktriangleright \begin{bmatrix} V_1 \\ V_2 \\ \cdot \\ V_n \end{bmatrix} = \begin{bmatrix} j\omega L_{1,1} & j\omega L_{1,2} & \cdots & j\omega L_{1,n} \\ j\omega L_{2,1} & j\omega L_{2,2} & \cdots & j\omega L_{2,n} \\ \cdot & \cdot & \cdots & \cdot \\ j\omega L_{n,1} & j\omega L_{n,2} & \cdots & j\omega L_{n,n} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ \cdot \\ i_n \end{bmatrix}$$

The active power feeding into port *k* is

$$P_k = V_k \times i_k^* = \frac{1}{2} \sum_{q=1,q \neq k}^n \omega L_{k,q} I_k I_q sin\theta_{qk}$$

Power flow control by current phase modulation

8

- Case I: Power is transferred from Port 1 to Port 2, Port 3, and Port 4
- Case II: Power is transferred from Port 1 and Port 2 to Port 3 and Port 4⁹

Modeling of the multiport transformer

3D finite element model

Current distribution

 $25.4 \ j\Omega$ 26.7 $j\Omega$ 27.2 $j\Omega$ 28.9 $j\Omega$

High frequency EIS measurement circuitry

 ϕ_1

 ϕ_i

 ϕ_n

•••

 ϕ_{il}

Phase Shift

Chip (i)

SPI bus

• • •

Phase Shift

Chip (n)

MCU

(TMDX28069USB)

DC/AC

Converter (1)

DC/AC

Converter (i)

DC/AC

Converter (n)

Phase Shift

Chip(1)

Crystal Oscillator

(13.56 MHz)

Perturbation

Perturbation

Battery

 $\operatorname{Cell}(1)$

Battery Cell (i)

Battery Cell (n)

Synthesize a small sinusoidal

current perturbation on Cells

Sweeping phase difference between two ports (ϕ_1 and ϕ_i)

 Phase-shift look up table for perturbation generation

Digital control phase shift chip

A prototype 4-port 13.56MHz MAC balancer

Experimental results of power flow control

NIVERSITY

Port #1 and Port #2 are configured as sources by phase shift control

Port #3 and Port #4 are configured as loads by phase shift control

The peak end to end efficiency is about 70%

Current perturbation and battery voltage for EIS

EIS measurement results

- 13.56 MHz MAC balancer with wide bandwidth online EIS
- Good match between prototype and commercial instrument

Specification of MHz MAC balancer

MHz MAC Balancer

Operating frequency: 10µHz - 500kHz Volume: < 5cm x 4cm x 1cm Perturbation Current: 20mA – 200mA Channel for EIS Measurement : 4 Prototype cost: < 100 USD

lvium-n-Stat

Operating frequency: 10µHz - 250kHz Volume: > 70cm x 50cm x 15cm Perturbation Current: 1mA - 1A Channel for EIS Measurement : 32 Product price: >10000 USD

Comparison with existing online EIS works

Publication	[6]	[7]	[9]	[10]	[11]	This work
Cell Level Perturbation	No	No	No	No	Yes	Yes
Test Cell Capacity	2.6Ah	N/A	3Ah	2.3Ah	3.4Ah	3.4Ah/3Ah/2.4Ah
Perturbation Source	Load	Battery Charger	Battery Charger	Motor Controller	Active Balancer	Active Balancer
Perturbation Type	Sinusoid	Sinusoid	Sawtooth	Noise/Multisine	Sinusoid	Sinusoid/Pulse
Perturbation Current	72-750 mA	1 A	2 A	130 mA	160 mA	20-200 mA
Perturbation Bandwidth	10 kHz	100 Hz	5 kHz	2 kHz	8 kHz	500 kHz

- Most works require external power supplies for perturbation generation
- Bandwidth of the existing EIS works is usually limited to 10 kHz or lower
- The proposed MAC balancer can perform a wide bandwidth EIS measurement due to the multi-MHz operating frequency

Summary

- A MHz MAC balancer is proposed with the circuits and MHz transformer design
- Enable HF EIS measurement without extra perturbation generation circuitry
- Compact MAC transformer with reduced coil size and thin magnetic sheet
- Integrate with cells to reduce wire impedance and achieve high frequency EIS
- The MHz MAC balancer with HF EIS is applicable to different dc/ac topologies
- A prototype 4-port 13.56 MHz flexible battery balancer with 500 kHz EIS capability

Thank You

References

- [1] A. Khaligh and Z. Li, "Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug In Hybrid Electric Vehicles: State of the Art," IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806-2814, July 2010.
- [2] L. Maharjan, T. Yamagishi, and H. Akagi, "Active-power control of individual converter cells for a battery energy storage system based on a multilevel cascade pwm converter," IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1099C1107, Mar. 2012.
- [3] A. Jossen, "Fundamentals of battery dynamics," Journal of Power Sources, vol. 154, no. 2, pp. 530-538, 2006.
- [4] P. A. Cassani and S. S. Williamson, "Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer," IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3956C3962, Dec. 2010.
- [5] W.Waag, S.Kabitz, and D.U. Sauer, "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, vol. 102, pp. 885-897, Feb. 2013.
- [6] W. Huang and J. A. Abu Qahouq, "An Online Battery Impedance Measurement Method Using DC-DC Power Converter Control," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 5987-5995, Nov. 2014.
- [7] Y. Lee, S. Park and S. Han, "Online Embedded Impedance Measurement Using High-Power Battery Charger," IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 498-508, Jan.-Feb. 2015.
- [8] F. Mestrallet, L. Kerachev, J. Crebier and A. Collet, "Multiphase Interleaved Converter for Lithium Battery Active Balancing," IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2874-2881, June 2014.
- [9] R. Koch, R. Kuhn, I. Zilberman and A. Jossen, "Electrochemical impedance spectroscopy for online battery monitoring power electronics control," 16th European Conference on Power Electronics and Applications, Lappeenranta, 2014, pp. 1-10.
- [10] D. A. Howey, P. D. Mitcheson, V. Yufit, G. J. Offer and N. P. Brandon, "Online Measurement of Battery Impedance Using Motor Controller Excitation," IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2557-2566, July 2014.
- [11] E. Din, C. Schaef, K. Moffat and J. T. Stauth, "A Scalable Active Battery Management System With Embedded Real-Time Electrochemical Impedance Spectroscopy," IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5688-5698, July 2017.
- [12] Y. Levron, D. R. Clement, B. Choi, C. Olalla and D. Maksimovic, "Control of Submodule Integrated Converters in the Isolated-Port Differential Power-Processing Photovoltaic Architecture," IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 821-832, Dec. 2014.

