
Performance Limits of Differential Power Processing

Ping Wang1, Robert C. N. Pilawa-Podgurski2, Philip T. Krein3, Minjie Chen1

1Princeton University, 2University of California, Berkeley, 3University of Illinois at Urbana-Champaign

Abstract: This paper investigates the performance limits of differential power processing (DPP) and presents

quantitative and systematic design guidelines for the selection and comparison of DPP topologies. A stochastic

model is developed to evaluate the expected power losses of a variety of DPP topologies with probabilistic load

distribution. The expected losses of several DPP topologies are derived and compared against traditional dc-dc

converters to reveal their performance limits. The impacts of the load distribution and load scale on the expected

losses are investigated. The theoretical models are verified with SPICE simulations and experimental results.

1 Introduction

Fig. 1: A N ×M differential power processing system with
N series-stacked voltage domains, each comprising M mod-
ular loads. The modular load units can be battery cells, PV
panels, or hard disk drives (HDD).

Differential power processing (DPP) has been proved ef-

fective in many applications including solar photovoltaics,

battery management systems, and computers on server racks

(Fig. 1) [1–4, 6]. DPP converters only process the differen-

tial power and can greatly reduce the power conversion stress

and losses. Various DPP topologies have been explored, with

tradeoffs in efficiency, size, cost, and control complexity. Em-

pirical work has been done to compare DPP topologies with

traditional dc-dc topologies using numerical and SPICE sim-

ulations [2]. An analytical model providing generalized design

guidelines for DPP topologies under a set of rigorous assump-

tions is needed and is the main focus of this paper.

This paper systematically investigates the performance

limits of differential power processing. A performance scaling factor, S(•), is introduced to describe how the per-

formance of a DPP converter changes as the system size scales up. The model has a minimum set of assumptions,

offers rich design insights, and is verified with SPICE simulations and experimental results. Extended theoretical

derivations, modeling details, and experimental results will be provided in the full paper.

2 Stochastic Loss Model and Scaling Factor of DPP Topologies

Fig. 2 shows several example DPP topologies classified into two categories: 1) fully-coupled DPP, where there is

a direct power flow path between two arbitrary voltage domains; and 2) ladder DPP, where the power is processed

by numerous standalone dc-dc converters. Fig. 2a∼2b are fully-coupled DPP topologies, and Fig. 2c∼2d are ladder

DPP topologies. Similar analysis will be extended to other DPP topologies in the final paper. DPP solutions are

typically applied to systems with stochastic loads. We develop a generalized analysis framework for DPP systems

with series-stacked voltage domains and stochastic loads, and compare their performance against an N:1 converter.

The DPP system in Fig. 1 has N series-stacked voltage domains, each comprising M loads connected in parallel.

The voltage of each voltage domain is V0. Assume that the instantaneous power of the jth load in the ith voltage
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(a) (b) (c) (d)

Fig. 2: Example DPP topologies: (a) ac fully-coupled DPP [3]; (b) dc fully-coupled DPP [4]; (c) ladder DPP with dual-active-bridge
cells [5]; (d) ladder DPP with buck-boost cells [6]. There are many different ways of implementing these topologies.

(a) (b) (c) (d)

Fig. 3: Simplified models of DPP topologies with the converter modeled as an ideal transformer and an output resistance: (a) ac
fully-coupled DPP; (b) dc fully-coupled DPP; (c) ladder DPP with dual-active-bridge cells; (d) ladder DPP with buck-boost cells.

domain is Pij(t). All Pij(t)’s are independent and identically distributed (i.i.d) random variables. The total power

consumed by the ith voltage domain is the summation of theM random variables: Pi(t) = Pi1(t)+Pi2(t)+...+PiM (t).

A DPP converter manipulates the power flow and balances the series-stacked voltage domains. The instantaneous

differential power of the ith voltage domain is the difference between its power and the average power of all domains:

∆Pi(t) =
P1(t) + P2(t) + ...+ PN (t)

N
− Pi(t) = P (t)− Pi(t). (1)

∆Pi(t) is the minimum power to be processed by the DPP converter. The conduction loss of the DPP converter is

directly related to ∆Pi(t). Here we derive the conduction loss of example DPP topologies as a function of ∆Pi(t).

• Fully-Coupled DPP Converter: A fully-coupled DPP topology can be modeled as an N -port network with all

ports connected to an N -winding ideal transformer of uniform turns ratio as shown in Fig. 3a (which is functionally

equivalent to Fig. 3b). The conduction loss of the DPP converter is captured by an output resistance Rout as

labeled in Fig. 3, which is assumed to be identical for all ports. In a fully-coupled DPP converter, the ith port is

processing a differential power of ∆Pi(t), and the total conduction loss of the full N -port DPP system is:

Ploss(t) = Rout

N∑
i=1

∆Ii(t)
2 = Rout

N∑
i=1

(
∆Pi(t)

V0

)2

=
Rout

V 2
0

N∑
i=1

(
Pi(t)− P (t)

)2
. (2)

Ploss(t) reflects the variance of an independently repeated sampling experiment of the random variable Pi(t). Its



statistical expectation, the average power loss of the DPP system over a long enough period, is:

E[Ploss(t)] =
Rout

V 2
0

× E

[
n∑

i=1

(Pi(t)− P (t))2

]
= M(N − 1)

Rout

V 2
0

σ2(Pij(t))⇒ S(MNσ2)︸ ︷︷ ︸
scaling factor

, (3)

where σ2(Pij(t)) is the variance of Pij . We use the symbol S(•) to represent the performance scaling factor of a

DPP system, which illustrates the growth rate of the loss as the dimension of the DPP system increases. Eq. (3)

indicates that the performance scaling factor of an M ×N fully-coupled DPP system is S(MNσ2).
::::
The

::::::::
expected

:::
loss

::
of
::

a
::::::::::::
fully-coupled

:::::
DPP

:::::::::
converter

::
is

:::::
only

::::::::::
determined

:::
by

:::
the

::::::::
variance

:::
of

::::
each

::::::::::
individual

:::::::::
stochastic

:::::
load,

::::
and

:::::
scales

:::::::
linearly

:::::
with

::
M

::::
and

:::
N .

:::::
The

::::::::
expected

::::
loss

::
is

:::::::::::
independent

:::::
from

:::
the

:::::
total

::::
load

::::::
power

:::
of

:::
the

:::::::
system.

• Ladder DPP Converter: In a ladder DPP topology, each DPP unit is a dc-dc converter as shown in Fig. 2c

(equivalent as Fig. 3c). Power needs to go through multiple dc-dc converters from one domain to another domain.

The differential power that the ith DPP unit needs to process between the ith and the (i + 1)th voltage domains

is ∆Pi↔i+1(t) =
∑i

k=1(P (t)− Pk(t)) = i× P (t)−
∑i

k=1 Pk(t), and the total conduction loss is:

Ploss(t) = Rout

n−1∑
i=1

∆I2i↔i+1 = Rout

n−1∑
i=1

(
∆Pi↔i+1(t)

V0

)2

=
Rout

V 2
0

n−1∑
i=1

(
i× P (t)−

i∑
k=1

Pk(t)

)2

. (4)

Its expectation, the average power loss of the DPP system over a long enough period, is:

E[Ploss(t)] =
Rout

V 2
0

× E

n−1∑
i=1

(
i× P (t)−

i∑
k=1

Pk(t)

)2
 =

M(N − 1)(N + 1)

6

Rout

V 2
0

σ2(Pij(t))⇒ S(MN2σ2)︸ ︷︷ ︸
scaling factor

. (5)

The conduction loss of an ladder DPP increases linearly as M increases, and increases quadratically as N increases,

so the performance scaling factor of a ladder DPP system with M ×N stochastic load array is S(MN2σ2).
:::
The

::::::::
expected

:::
loss

::
of
::
a
::::::
ladder

:::::
DPP

::::::::
topology

::
is

::::
only

::::::::::
determined

:::
by

:::
the

::::::::
variance

::
of

::::
each

::::::::::
individual

::::
load.

:::
It

:::::
scales

:::::::
linearly

::::
with

:::
M ,

::::
and

::::::
scales

::::::::::::
quadratically

::::
with

:::
N ,

::::
and

::
is
::::::::::::
independent

::::
from

::::
the

:::::
total

::::
load

::::::
power

::
of

::::
the

:::::::
system.

• Conventional N:1 Dc-Dc Converter: In a conventional N:1 dc-dc converter, the full power of the M ×N load

array needs to be processed by the dc-dc converter. Assuming the output resistance of a conventional N:1 dc-dc

converter is Rout, the conduction loss of this converter when processing power for M ×N i.i.d. loads is:

E[Ploss(t)] =
Rout

V 2
0

× E

( n∑
i=1

Pi(t)

)2
 =

(
MNσ2(Pij(t)) +M2N2µ2(Pij(t))

)
× Rout

V 2
0

⇒ S(M2N2µ2)︸ ︷︷ ︸
scaling factor

, (6)

where the µ(Pij(t)) is the average power of each unit.
:::
The

:::::::::
expected

:::
loss

:::
of

::
a

:::
N:1

::::::
dc-dc

::::::::
converter

:::
is

::::::::::
determined

::
by

::::
the

::::::
square

::
of

::::
the

::::
total

:::::::
output

::::::
power

::::
and

:::
the

::::::::
variance

::
of

:::::
each

:::::
load,

:::
and

::::::
scales

::::::::::::
quadratically

:::::
with

:::
M

:::
and

:::
N .

Eq. (3) and (5) reveal that the average power loss of DPP architectures is independent from the average power µ

but only determined by the variance σ, validating the fundamental benefit of DPP solutions: a DPP converter only

needs to process the differential power. If the load power is uniform without variation, a DPP system is lossless.



Table 1: Output Resistance, Expected Loss, and Scaling Factor of a few DPP Topologies and an N:1 DAB Converter

Topology Output Resistance Expected Loss Scaling Factor

Fully-Coupled DPP
Ac-Coupled

8N

GSW
+

4N

GM M(N − 1)σ2(Pij(t))×
Rout

V 2
0

S(MNσ2)

Dc-Coupled
32N

GSW
+

16N

GM

Ladder DPP
DAB-cell

32N − 32

GSW
+

16N − 16

GM

M(N − 1)(N + 1)

6
σ2(Pij(t))×

Rout

V 2
0 S(MN2σ2)

Buck-Boost-cell
8N − 8

GSW
+

4N − 4

GM

2M(N − 1)(N + 1)

3
σ2(Pij(t))×

Rout

V 2
0

N:1 Converter DAB
32

GSW
+

16

GM

(
MNσ2(Pij(t)) +M2N2µ2(Pij(t))

)
×
Rout

V 2
0

S(M2N2µ2)

3 Performance Limits, SPICE Verification, and Experimental Results

We compare the performance limits of a variety of different differential power processing topologies based on

the following assumptions: (a) all topologies have identical semiconductor die area represented by
∑
GswV

2
sw (Gsw

is the switch conductance; Vsw is the switch voltage rating); all
∑
GswV

2
sw’s are normalized to GSWV 2

0 . (b)

all topologies have identical total magnetic window areas represented by
∑
Gm (Gm is the conductance of each

winding); all
∑
Gm’s are normalized to GM . One way to design an optimal dc-dc converter is to equally allocate

the semiconductor die area and transformer window area between input and output ports, and make the design as

symmetric as possible. Following the methods in [7], we derive the output resistance of the example DPP topologies

in Fig. 2, as well as the output resistance of an N:1 dual-active-bridge (DAB) dc-dc converter. The expected losses

of DPP topologies and DAB converter are listed in Table 1. Detailed derivations will be provided in the full paper.

We use the ratio between the expected loss of a DPP converter and an N:1 DAB converter (namely Normalized

Loss,
Ploss,DPP

Ploss,DAB
) as a figure-of-merit to evaluate the performance of DPP topologies. The coefficient of variance

CV of Pij(t) is σ/µ. The normalized loss of different DPP topologies are shown in Fig. 4. A lower normalized

loss indicates lower loss or smaller volume. Monte Carlo SPICE simulations of DPP circuit models (in Fig. 3) are

performed to validate the stochastic loss model. Switching losses are captured by paralleling an equivalent resistance

(1/Cossfsw) at each port. The simulations are executed 10,000 times to obtain the normalized loss. The simulated

normalized loss matches precisely with the calculated results from the theoretical derivation (Table 1).

(a) (b) (c)

Fig. 4: Calculated (curve, –) and simulated (dot, �) normalized loss as functions of: (a) the number of series-stacked voltage domains
(N); (b) the number of parallel modular loads within one voltage domain (M); (c) coefficient of variance (CV = σ/µ) of the loads.



Fig. 5: A 50-HDD storage server supported by a 10-
port MAC-DPP prototype with 450 W power rating
and over 99.5% peak system efficiency.

Fig. 4a and 4b show the normalized loss of different DPP topolo-

gies as N or M increases. As N increases, the normalized loss of the

fully-coupled DPP topologies (blue and red) converges to an upper

limit, while the normalized loss of the ladder DPP topology (green)

keep increasing. This graph provides quantitative design insights

for DPP architectures. For example, the normalized loss of the ac

fully-coupled DPP topology will converge at
C2

V

4M as N increases.

With M = 4 and N ≥ 2, if CV = 1, the normalized loss of an ac

fully-coupled DPP converter is always lower than 1/16, indicating

over 16x loss reduction from a N:1 dc-dc converter. Fig. 4c shows

the normalized losses of different DPP topologies as CV changes.

When CV increases, the DPP converter needs to process more dif-

ferential power, so the normalized losses of all topologies will in-

crease, but they will all converge at an upper limit. This is because

the conduction loss of a N:1 converter converter when CV is large is dominated by MNσ2, scaling at the same

rate as that of DPP converters. The mismatch at lower CV range is caused by the switching loss which is not

captured by the stochastic model. Fig. 4 reveals that the ac-coupled DPP is the most efficient among all selected

DPP topologies. Fig. 5 shows the picture of a 10-port Multiport-Ac-Coupled DPP (MAC-DPP) converter powering

a 10×5 hard-disk-drive (HDD) server. A LabVIEW platform was built to monitor the system efficiency in real

time. The 450 W MAC-DPP system reached a peak efficiency of 99.5% with >630 W/in3 power density. Extended

experimental results of the storage server with stochastic loads will be presented in the final paper.

4 Conclusions

This paper reveals the performance limits of differential power processing (DPP). A stochastic model is developed

to evaluate the performance limits of DPP topologies as the dimension (M , N), expectation (µ) and variance (σ) of

modular load array scales up. The performance limits of many DPP topologies are derived and compared, providing

useful design guidelines for implementing DPP systems. The analytical framework is verified by SPICE simulations.

Extended theoretical derivations and experimental results will be presented in the final paper.
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