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Part I: 
Background on Capabilities and Objectives 

of Core Loss Models

Charles R. Sullivan, Professor

http://dartgo.org/pmic



What we know and what we don’t know

We know: 

 How to measure core loss. 

 Data for some situations.

 Approximate models, and their 
limitations.

 A list of loss mechanisms that 
contribute to loss.

We don’t know:

 The physics and physical 
parameters well enough to 
make accurate first-principles 
loss predictions.

 Practical methods to predicting 
all the relevant loss effects.

 Not enough data is available, 
especially not publically.
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State of the art
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Some data and the Steinmetz model
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 For sinusoidal 
excitation.

 Charles Steinmetz’s 
model:

 Typical modern 
model:

 Can use different 
parameters for 
different frequency 
ranges.

BkP ˆ

BkfP ˆ

N97



Standard loss mechanisms
 Static hysteresis loss: loop area that’s independent of frequency 

→ P ∝ f, or P = k·f·Bβ

 Eddy-current loss.  Expect P ∝ B2

 Scale: individual particle vs. overall core leg.

 Simple theory: P ∝ f2, but,

 That’s for sizes small compared to skin depth.

 Resistivity can be frequency-dependent

 Anomalous loss, defined as either:

 Any and all other loss mechanisms—also called “excess loss”

 Local eddy-current loss induced by rapid domain-wall motion: P ∝ f1.5B1.5
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Summing standard loss mechanisms?
 P = Physt + Pexcess + Peddy

 True by definition if Pexcess ≡ P - Physt - Peddy

 But if Panomalous is defined as loss from impeded domain wall motion,  
Physt and Panomalous are not truly independent.

 High accuracy requires a more holistic model.
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Omitted in all of the above

Behaviors:

 Effect of DC bias

 Effects of non-sinusoidal 
waveforms.

 Effect of core size and 
shape.

Phenomena:

 Wave propagation and 
dimensional resonance.

 Magnetostriction and 
mechanical resonance.

 Flux crowding as affected 
by core shapes.
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Waveform effect on core loss: 
Concepts, rather than how-to

 Initial hope in “Generalized Steinmetz Equation” (GSE) model:  
instantaneous loss depends on B and dB/dt:   p(t) = p(B(t), dB/dt)

 If this worked, you could add up loss for incremental time 
segments:
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Eloss = E1 + E2 + …

It doesn’t work: 

flawed concept

B(t)

or better, an integral…



Improvement that enabled iGSE
(improved Generalized Steinmetz Equation) 

 Loss depends on segment dB/dt
and on overall ΔB

 Still Eloss = E1 + E2 + …, but E1 depends on a global 
parameter as well as a local parameter.
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dB/dtB(t)



Composite waveform method
 Same concept as GSE: add up independent loss for each segment.

 Unlike the GSE, this works pretty well in simple cases:

 Waveforms where ΔB is the same for the segment and the 
whole waveform!

 It reduces to the same assumptions as the iGSE.
12

Eloss = E1 + E2

= +
B(t)



What we know how to do for non-sinusoidal 
waveforms:

 For simple waveforms, add up the loss in each segment.

 For waveforms with varying slope, add up the loss for each segment, 
considering overall ΔB and segment δB.

 See iGSE paper for how those factor in.

 For waveforms with minor loops, separate loops before calculating 
loss.
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Loss models for each segment

 iGSE derives them from a Steinmetz model

 Limitation: Steinmetz model holds over a limited frequency range.

 Loss map model uses square-wave data directly for a wide frequency 
range.

 Clearly better if you have the data.

 Can also map with different dc bias levels.

 Sobhi Barg (Trans. Pow. Electr., March 2017) shows that the iGSE 
gets much more accurate if you use different Steinmetz parameters 
for each time segment in a triangle wave.
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Limitation for all of the above:

 “Relaxation effect”

 Simple theory says loss for one cycle
should be the same for both
flux waveforms.

 In practice, it’s different.

 i2GSE (J. Mühlethaler and J. Kolar) 
captures this but is cumbersome 
and requires extensive data.

15
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Two strategies for improved models

Use data to tune parameters of a 
simple model, just complex enough 
to accurately capture behavior. 
(Dartmouth)

 If the model structure is right, it 
can generalize beyond the 
tested waveforms—requires 
less data.

 Requires, and drives, better 
understanding of loss effects.

Feed data into machine learning to 
create data-driven model without 
a-priori assumptions about model 
structure.  (Princeton)

 Can accurately capture effects 
we haven’t noticed or 
understood.

 Requires lots of data and 
computer power, but that’s 
feasible.
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Part II: One approach to an improved 
model using Princeton data

Charles R. Sullivan, Professor

http://dartgo.org/pmic



Planning model structure
 Start with known characteristics of loss behavior.

 Observed in measurements—ours and others’.

 Expected based on physics.

 Develop model structures that produce behavior consistent with the known 
characteristics.

 Model structure avoids non-physical behaviors.

 Model structure accounts for observed behavior not captured by overly simple models.

 Adjust parameters to match measurement data.

 Models structured to minimize the number of parameters.  This may reduce the 
number of measurements needed for new materials.

 Minimal set of parameters also makes the model easier to use in practical engineering.
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Known behavior of sinusoidal loss:
we want a model that matches these features.

 Limit at low-frequency: 

 Static loop, i.e., energy loss per cycle is independent of frequency.  This means 
loss is linearly proportional to frequency.

 Also implies independent of waveform—see next slide.

 Amplitude dependence at fixed frequency follows closely the original Steinmetz 
equation (Pv = k Bβ).

 Limit at low amplitude: linear behavior, as per the linear system defined by the 
complex permeability curve. 

 Slope of Pv vs. f on a log-log plot increases with f.

 Slope of Pv vs. B on a log-log plot is usually closer to a straight line, but with 
different slopes at different frequencies.

 DC bias has approximately multiplicative effect on loss, except that loss increase 
isn’t quite as big at high frequency.



Stenglein data on 
sine vs. triangle.

 Demonstrates shape 
independence at low 
frequency.

 True even at 20 kHz.

Erika Stenglein and Thomas 
Dürbaum, "Empirical Core Loss 
Model for Arbitrary Core 
Excitations Including DC bias." 
COMPEL 2020.



Correct behavior for non-sinusoidal 
waveforms

 Small change in waveform should lead to a small change in loss.

 Minor loop separation should be used.

 Generally behavior follows the “composite waveform 
hypothesis” with the exception of “relaxation effects”.

 50% duty cycle triangular flux should have lower loss than a sine 
wave for the same peak flux density and frequency 
(~85 to 90% at typical frequencies).

 Hypothesis: with the right model, parameters extracted without 
exhaustive testing of waveforms—ideally just sine waves or just 
triangle waves.



Models for loss from waveforms
 iGSE: improved Generalized Steinmetz Equation. We developed this 20 

years ago and it is now the standard technique.  Has serious limitations.

 Barg improvements: each segment of a triangle 
wave uses a different Steinmetz parameters.

 Stenglein:  Pv = Ehyst(Bac, Bdc) ∙ (frequency effect)

Pv = Ehyst∙ FLW ∙ factual

FLW = loop widening factor = FLW (factual, waveform)) 
= H

B

High 
frequency

Low 
frequency

S. Barg, K. Ammous, H. Mejbri and A. Ammous, "An Improved Empirical Formulation for 
Magnetic Core Losses … under Nonsinusoidal …," in IEEE Trans. Pow. Electr., 32(3) 2017



Low freq. 

asymptote

Small

signal 

asymptote

Accurate

frequency 

behavior

DC bias

Small 

change in 

waveform

leads to 

small 

change in 

loss

Composite

wavefrms

OK

Relaxatio

n effect

Number

of params

w/o dc 

model

*Special 

testing 

needed.

iGSE ✖ ✖ ✖ ✖   ✖ 3

iGSE

Barg ✖ ✖  ✖ 
Not in paper 

but feasible ✖
~3x2 or 

more

i2GSE ✖ ✖ ✖ ✖    8*

Stenglein  ✖   ✖  ✖ 4

New 

Model       ? 4 or 6



Preliminary testing of new model

 Use data extracted from datasheet curves for 
sinusoidal excitation.

 N49 ferrite chosen for difficult-to-model complex 
shape of loss curves.

 Simple machine learning adjusts 4 or 6 parameters to 
minimize RMS value of relative error for full dataset.
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Results Version 2

 4.99% RMS error; 
4.25% average error magnitude

 6.65% RMS error

 5.64% average error magnitude

Version 1



Next steps
 Test with nonsinusoidal waveforms 

(data being generated at Princeton).

 Adapt method as needed.

 Develop simulation model (see next slide).

 Consider the effects of core size/shape.
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Potential for Simulation model
 Best-practice simulations now use a two-step process:

 Run a simulation with a basic, linear loss model to get waveforms.

 Use waveforms in a separate loss model post-processing step.

 Goal: dynamic model for material 
behavior that inherently exhibits 
accurate loss behavior: no 
separate loss prediction model.
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Princeton University
Power Electronics Research Group

Task 1: MIDAS: A ML-Integrated Data 
Acquisition System

Task 2: MICLM: ML-Integrated Magnetic 
Core Loss Model

Task 3: MLSPICE: A ML-integrated Planar 
Magnetics SPICE Modeling Tool

Machine-Learning Methods for Magnetic 

Core Loss Modeling – A Discussion

Minjie Chen

Electrical and Computer Engineering

Andlinger Center for Energy and the Environment 

Princeton University
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Methods for Magnetic Core Loss Modeling
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 Improved – improved GSE (i2GSE)

 Improved GSE (iGSE)

 Steinmetz Equation (SE)

three parameters, sine wave

three parameters

eight parameters

 Machine Learning based Methods

𝑘, 𝛼, 𝛽

𝑘𝑖, 𝛼, 𝛽

𝑘𝑖, 𝛼, 𝛽, 𝛼𝑟, 𝛽𝑟, 𝑘𝑟, 𝜏, 𝑞𝑟

Task 1: MIDAS: A ML-Integrated Data 
Acquisition System

Task 2: MICLM: ML-Integrated Magnetic 
Core Loss Model

Task 3: MLSPICE: A ML-integrated Planar 
Magnetics SPICE Modeling Tool

ringing, dc bias, temperature, memory effect neural network core loss

• C. R. Sullivan et al., "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms using only Steinmetz Parameters," COMPEL02

• J. W. Kolar et al., “Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems,” TPEL12

thousands of parameters



Motivation for Machine Learning based Methods
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A

A

B

B

C

C

D

D

t

t

• Analytical models don’t work well for these cases

• Difficult to capture dc-bias, temperature, relaxation effect

• Consider core loss modeling as time-domain signal 

processing, how about we try machine learning?

B(t)

B(t)

Task 1: MIDAS: A ML-Integrated Data 
Acquisition System

Task 2: MICLM: ML-Integrated Magnetic 
Core Loss Model

Task 3: MLSPICE: A ML-integrated Planar 
Magnetics SPICE Modeling Tool

Speech recognition

iGSE

i2GSE

“Relaxation effect”



Motivation for Machine Learning based Methods

Why machine learning?
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• Some analytical methods assume “ideal” waveforms, but 

real waveforms are usually “non-ideal”.

• Some analytical models do not capture relaxation or 

memory effects. Models that do capture tend to be very 

complicated and/or data-driven.

• Adding additional factors into analytical models is usually 

difficult (temperature, dc-bias), but adding an additional 

layer, or even changing the architecture of a neural 

network is relatively easy (a few lines of codes in PyTorch).

• Provide new insights to analytical methods.

to



MagNet: Machine Learning for Core Loss Modeling 
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• H. Li, M. Chen et al. “MagNet: A Machine Learning Framework for Magnetic Core Loss Modeling,” COMPEL20 

• Github Repository: https://github.com/minjiechen/MagNet

MagNet - Open Source, Industry Collaboration and Student Competition

Automatic Data Acquisition Neural Network Training Lumped Circuit Model

https://github.com/minjiechen/MagNet


Training ML Models with Data from Datasheet

34

• Extract data from datasheet

• Reconstruct the extracted data (𝒇, 𝑩, 𝑷𝑽) into voltage and current waveforms (time sequence)

assume pure-sinusoidal current waveform



Neural Network Architecture
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Model-based training: a “grey-box” neural network to initial the process

 Data-driven training: a “black-box” neural network optimized for performance

• Github Repository: https://github.com/minjiechen/MagNet

https://github.com/minjiechen/MagNet


Predicting Core Loss based on Datasheet Data
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟: 3.65% 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟: 7.62% Initial Training with 

Extracted Data 

from Datasheet

Initial Neural 

Network

Retrain with 

Measured Data 

from Experiments

Completed Neural 

Network

Core Loss 

for 

Sinusoidal 

Periodic  

Excitations

Core Loss 

for

Arbitrary 

Excitations



Transfer Learning for 10 Different Materials
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• Reuse the neural network architecture for different materials

• Evaluated 10 different ferrite materials from TDK 

• Average RMS error lower than 10%

• Similar core loss curve shapes  lower RMS error

There may exist a few neural 

network structures that fit 

most magnetic materials.

Model 

Initialization 



Power Stage

Data Acquisition System for Sine and PWM Excitations 
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Time Step: 10 ns

Data Length: 10,000

Frequency Range: 10 kHz - 1 MHz

Data Rate: 3 seconds/data

Waveform: Triangle, Trapezoidal, Sine 

Types: Periodic / Sequential

Triangle Waveform Trapezoidal Waveform

Voltage

Current

Voltage

Current

DUT

Voltage

Current

Oscilloscope

Tektronix DPO4054

Current 

Shunt

Host Computer



Evaluating the Measurement Accuracy
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Relative Error DC Avg. Measurement AC RMS Measurement

Voltage Channel Avg = 0.32%, Std = 0.35% Avg = 0.94%, Std = 1.17%

Current Channel Avg = 0.25%, Std = 0.29% Avg = 0.58%, Std = 0.66%

Calibration Setup for Voltage Channel

Function

Generator

RIGOL

DG4102

Agilent 

34401A 

6½ Digit 

Multimeter

Oscilloscope

Tektronix

DPO4054

Compare

Power

Amplifier

ENI 1040L 

Calibration Setup for Current Channel

Function

Generator

RIGOL

DG4102

Agilent 

34401A 

6½ Digit 

Multimeter

Oscilloscope

Tektronix

DPO4054

Compare
Power

Amplifier

ENI 1040L 

Resistor

Load

Coaxial

Shunt

Current Shunt 

Resistor

Rated 

Value

Resistance 0.983 ohm

Uncertainty 0.200 %

Calibration Process

• Voltage measurement error bound (dc offset and ac rms): <1%

• Current measurement error bound (dc offset and ac rms): <1%

• Phase difference (after time skewing) : <1 ns (0.1o @500kHz) ?

• Need a “standard” way to determine the measurement accuracy.

• How “accurate” is “enough” for core loss measurement? 

Low parasitics current shunt



N87 ferrite material

Core R22.1x13.7x7.90

50kHz

100kHz
200kHz

300kHz
400kHz

N27 ferrite material

Core R20x10x7

50kHz

150kHz

100kHz

N49 ferrite material

Core R16x9.6x6.3

50kHz

100kHz

200kHz
300kHz

400kHz

Absolute Accuracy of Core Loss Measurement

• Many sources of core loss mismatch

– Geometry and material uniformity (a few %?)

– Equipment accuracy and resolution (a few %?)

– Model accuracy and flexibility (a few %?)

• Compare measured data against datasheet (sinusoidal)

• Need a “standard equipment” for comparison

40
* preliminary data – pending verification



𝑻 = 𝟏/𝒇𝒔𝒘

𝑫 𝑫

N87 Core, at 200kHz N49 Core, at 400kHz

Data Acquisition Accuracy and Model Accuracy

• Core loss for different waveform types and different materials

41

Low flux density, very low loss, perhaps beyond 

the capability of the measurement setup

* preliminary data – pending verification



Sample-to-Sample Test and Flip Terminal Test
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• Test two identical core samples and 

compare the measurement results

• The performance of these two cores are 

very similar (perhaps from the same batch)

• Flip the two terminals of a device-under-test (DUT) 

and compare the measurement results.

• *50% triangle* close to *sinusoidal*

• *25%/75% triangle* higher loss than *sinusoidal*

N87 ferrite material

Core R22.1x13.7x7.90

N27 ferrite material

Core R20x10x7

* preliminary data – pending verification



Comparing MagNet with iGSE for Arbitrary Waveform
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• Type: Triangle Wave PWM; Frequency: 50kHz ~ 500kHz; Size: 6000 data points;

• Duty ratio: 10% ~ 90% with step of 10%;   Amplitude: 3V ~ 60V; 

LSTM-based method:

Avg. of relative error: 11.84%

RMS of relative error: 21.21%

iGSE:

Avg. of relative error: 21.29%

RMS of relative error: 25.68%

Long-Short-Term-Memory Network

A neural network structure that can 

capture the “memory effect”



Summary
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• Machine learning methods may be complementary to analytical methods.

• A 100% data-driven method is also promising.

• Data size and quality is extremely important for a data-driven approach. 

• ML can work, but whether it is better or not, still unknown. 

Minjie Chen Yuxin ChenHaoran Li Min Luo


