

MSP-LEGO: Modular Series-Parallel (MSP) Architecture and LEGO Building Blocks for Non-isolated High Voltage Conversion Ratio Hybrid Dc-Dc Converters

Yueshi Guan^{1,2}, Ping Wang¹, Ming Liu¹, Dianguo Xu², Minjie Chen¹

¹Princeton University, USA ²Harbin Institute of Technology, China

High Voltage Conversion Ratio

High voltage conversion ratio topologies

- Two-stage transformer-based solutions
 Low light load efficiency & low power density
 Narrow operation range
- Single-stage hybrid-switched-capacitor-based solutions
 Transformer-free & high modularity & non-isolated
 High light load efficiency & high power-density
 High operating bandwidth

Modular Series-Parallel Architecture

A SC-TaB Example Topology

A Series-capacitor tapped buck (SC-TaB) converter

Interleaved operation to reduce the output current ripple

Semi-Resonant Operation

UNIVERSITY

Extended Voltage Gain

- High voltage conversion ratio
- Extend the voltage conversion ratio by 3x compared with Buck

MSP-LEGO Converter (split ac bus)

NIVERSITY

Operation Principles

- Linear Extendable Group Operated
- Switched capacitor building block
- Switched inductor building block
- Automatic current sharing
- Low component count

Conversion Ratio Breakdown

- 3:1 from the series input stack
- 3:1 from the duty ratio
- 4:1 from the semi-resonant operation
- $3 \times 3 \times 4 = 36:1$

MSP-LEGO converter (merged ac bus)

Merged virtual ac bus **Overall Ratio: 24:1** Ar virtual ac bus S_{A2} V_{OUT} 2:1 L_r $V_{IN}/2$.000 S_{B1} L_m C_{Br} D=33%Series Unit ×2 Parallel Unit ×1

Key principles:

- C_{Ar} and C_{Br} effectively connected in parallel
- Automatic voltage balancing of series units

Advantages:

 Flexible series-parallel combinations

Disadvantages:

 Current sharing not guaranteed

Interleaved MSP-LEGO converter

MSP-LEGO converter with two interleaved modules

PRINCETON

IVERSITY

- Reduced output current ripple
- Reduced input capacitor size

Other Isolated MSP-LEGO Options

Isolated half-bridge (split ac bus)

Modular Gate Drive Circuits

Boot-strap gate driver

- Signal bootstrap
- Power bootstrap
- Adopted in prototype

Capacitive isolated gate driver

- Power bootstrap
- IL711 isolated coupler

A 110W/in³ MSP-LEGO prototype

circuit included

Converter Parameter Design

- Design capacitors to balance the charge sharing loss and size
- Design coupled inductor to achieve ZVS and minimize core loss
- Select switches to minimize the switching and conduction losses
- Select the optimal operating frequency (600kHz)

Prototype Specifications

BOM of the prototype converter

- The half-bridge module is implemented with TI GaN LMG5200
- The coupled inductor is implemented as a PCB planar inductor

200V.

100V.

50V.

Experimental Results

i_{r2} i_{r2} v_{S1v} v_{S1v} g_Q i_{r2} i_{r2} v_{S1v} g_Q i_{r2} i_{r2} i_{r2} v_{S1v} g_Q i_{r2} i_{r2}

10A output current

PRINCETON

UNIVERSITY

Input: 120V-150V, Output: 5V, Current, 20A

- Peak efficiency 91.5% with 10 A output current
- Over 88% efficiency across a wide voltage/power range

Converter Thermal Images

3A output current (200LFM)

10A output current (200LFM)

The coupled inductor is still the hottest component

Transient response

PRINCETON UNIVERSITY

Improving dynamic response in future work

Conclusion

- MSP architecture and LEGO building blocks
- Linear extendable with reduced voltage/current stresses
- Hybrid switched-capacitor magnetic operation
- Achieve high efficiency and power density across wide operation range

Thank you!

References

- 1. Y. Lei, W. Liu and R. C. N. Pilawa-Podgurski, "An Analytical Method to Evaluate and Design Hybrid Switched-Capacitor and Multilevel Converters," IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2227-2240, March 2018.
- 2. S. Jiang, S. Saggini, C. Nan, X. Li, C. Chung and M. Yazdani, "Switched Tank Converters," IEEE Transactions on Power Electronics, vol. 3, no. 6, pp. 5048-5062, June 2019.
- 3. M. Chen, "Magnetics design and optimization for tapped-seriescapacitor (TSC) power converters," IEEE Workshop on Control and Modeling for Power Electronics, Stanford, 2017, pp. 1-7.
- P. S. Shenoy, M. Amaro, D. Freeman, J. Morroni, "Comparison of a 12V 10A 3MHz Buck Converter and a Series Capacitor Buck Converter" Proc. IEEE Applied Power Electron. Conf., pp. 461-468, Mar. 2015.
- 5. K. I. Hwu, W. Z. Jiang and Y. T. Yau, "Ultrahigh Step-Down Converter," IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3262-3274, June 2015.

