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Abstract

This document details the theory and construction of a device that uses laser interferometry to measure
the vibration of a reflective surface (which could be located outside the device itself). Although we have
demonstrated that such a device is buildable and can work in the lab, there are still several issues to be dealt
with before it could become usable in the field for actual measurement.

1 Operational Theory

1.1 The Stationary Michelson Interferometer

The laser interferometry microphone is based on the Michelson interferometer, shown below:

source

target
ds

dt
dm

dd

Figure 1: Schematic of the Michelson interferometer. The laser emitter, beam splitter, reflecting mirror, target,
and detector are all shown, along with the approximate path of the laser beam.

The interferometer compares the relative phase of two paths of the laser light: (1) the path proceeding directly
through the beam splitter, reflecting off the top mirror, and reflecting off the beam splitter to the detector, and
(2) the path initially reflecting off the beam splitter, then reflecting off the target, and passing through the beam
splitter to hit the detector. The two paths cover different distances:

d1 = ds + 2dm + dd for path 1 (1)

d2 = ds + 2dt + dd for path 2 (2)

Therefore, the electric fields of the two beams will probably be out of phase upon arriving at the detector. Using
the sinusoidal electromagnetic wave equation:

~E = ~E0 sin(kx − ωt + φ) (3)

we find that for these two paths, the electric field strengths at the detector are

~E1 = ~E0 sin(kd1 − ωt + φ) (4)

~E2 = ~E0 sin(kd2 − ωt + φ) (5)

And the overall total electric field is

~Ed = ~E0

(

sin(kd1 − ωt + φ) + sin(kd2 − ωt + φ)
)

(6)

~Ed = ~E0

(

sin(kds + 2kdm + kdd − ωt + φ) + sin(kds + 2kdt + kdd − ωt + φ)
)

(7)
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1.2 Changing Path Lengths in the Interferometer

The principle that allows the interferometry microphone to detect sound is the vibration of the target caused by
ambient sound waves. This means that the path length component dt varies in time. For later convenience, we
allow dm and ~Ed(t) to be time-dependent as well. We can now split the distances dm(t) and dt(t) into constant
and variable components:1

dm(t) = dm0 + δm(t) dt(t) = dt0 + δt(t)

so we now have

~Ed = ~E0

(

sin(kds + 2kdm0 + kdd − ωt + φ + 2kδm(t)) + sin(kds + 2kdt0 + kdd − ωt + φ + 2kδt(t))
)

(8)

Equation (8) includes terms representing oscillations on two different orders of magnitude. The variations
in the target and mirror distances δt(t) and δm(t) occur with frequencies characteristic of sonic vibrations,
approximately 3-5kHz. In contrast, the oscillation of the laser, represented by ω, will be at least several GHz for
a maser and nearly 1015Hz for the visible-light lasers that will be available in practice. Therefore we can treat
δm(t) and δt(t) as approximately constant over a few oscillations of the laser radiation. Accordingly, we define
our zero point of time and the quantities dm0 and dt0 such that

kds + 2kdm0 + kdd − ωt + φ and kds + 2kdt0 + kdd − ωt + φ

are integral multiples of 2π. This reduces equation (8) to

~Ed(t) = ~E0

(

sin(2kδm(t)) + sin(2kδt(t))
)

(9)

1.3 Optimizing Intensity Variation

Our detector measures the electromagnetic intensity, given by

I(t) ∝ E2

d(t) (10)

I(t) ∝ E2

0

(

sin(2kδm(t)) + sin(2kδt(t))
)2

(11)

Differentiating I(t), we find that for a small change in δt(t) the intensity variation is

∂I

∂δt

∝ kE2

0

(

sin(2kδm(t)) + sin(2kδt(t))
)

cos(2kδt(t)) (12)

We would like to set up the interferometer to maximize the magnitude of ∂I

∂δt

and thus provide the greatest
detectable signal, so we set

∂2I

∂δm∂δt

∝ 8k2E2

0
cos(2kδm(t)) cos(2kδt(t)) = 0

cos(2kδm(t)) = 0 or cos(2kδt(t)) = 0 (13)

The left condition leads to the maximum variation, while the right condition leads to a minimum of zero variation
(which would render the apparatus useless). Of course, this result is not really practical since we can’t regulate
the position δt(t) to that accuracy, but it is useful for the next section.

1.4 Feedback Control

This last result presents an immediate problem: if the function cos(2kδt(t)) becomes equal to zero, the intensity
I(t) reaches a local extremum and it will be impossible to tell which way it comes back — that is, when the
target distance changes in such a way as to extremize I(t), there is no way to tell whether the target keeps
moving in the same direction or switches direction, since both cases lead to the same change in intensity.

1These δs represent a small changing component of the path length, not the Dirac or Kronecker delta functions, which are not

used anywhere in this document.
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However, equation (9) suggests an alternate method: we can effectively measure δt(t) by altering δm(t) in such
a way as to keep I(t) roughly constant. This requires that

dI

dt
∝

∂I

∂δm

dδm

dt
+

∂I

∂δt

dδt

dt
= 0

or

4kE2

0

(

sin(2kδm(t)) + sin(2kδt(t))
)

(

cos(2kδm(t))
dδm

dt
+ cos(2kδt(t))

dδt

dt

)

= 0 (14)

We can make this zero by maintaining one of these conditions:

δm(t) = −δt(t) or δm(t) = δt(t) + π (15)

(perhaps in addition to other, unnecessarily complicated ways). Essentially, the adjustments we make to the
piezo mirror to keep the intensity constant will duplicate (up to a sign) the movements of the target.

In practice, we cannot assume the existence of a perfect feedback system, and there is some possibility that a
sudden jump in δt(t) will knock it significantly out of sync with δm(t). However, because the sine and cosine
functions are cyclic, we can alter δm(t) in either direction in such a case and it will reach a point that restores the
equilibrium before too long. This does present complications with the electronics, though, as described below.

2 Construction

2.1 The Interferometer Setup

There were a couple of practical issues with our interferometer setup that we didn’t anticipate, which required
making minor changes to the design.

source

piezo mirror

target

fixed

polarizer

spinnable polarizer

Figure 2: Schematic of our actual interferometer setup. This differs from the basic setup (figure (1.1)) only in
the addition of the two polarizers and the contraction of the target distance.

The primary problem was that the intensities of the reflected and local beams would be drastically different,
since the local beam was bouncing off a full mirror, whereas the reflected beam was bouncing off a partially
reflective surface (i.e. glass or plastic). This asymmetry makes it harder to get a usable interference pattern. We
considered various options for attenuating the local beam before settling on the obvious choice of polarizers.2 As
it turns out, the laser beam is already polarized, so by passing the local beam through a polarizer oriented at
some angle to the polarization of the beam, we could block any desired percentage, simply by altering the angle.

However, this presented a slight problem: the local and reflected beams had to be of the same polarization to
produce a satisfactory interference pattern. We solved this by putting a second, fixed polarizer in between the
beam splitter and the detector, so that both the local and reflected beams would pass through it. We oriented
this polarizer such that it would allow the maximum possible fraction of the reflected beam through, but would
block the perpendicular component of the local beam. This not only guaranteed that both beams would have
the same polarization, but it also helped to further attenuate the local beam.

2Thanks to Greg Snyder for that inspiration
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Another issue we encountered was that of the coherence length, which is the maximum length over which a
laser can reasonably be expected to maintain a coherent phase. Random fluctuations in the internal workings of
the laser will cause essentially spontaneous phase changes over longer periods. The difficulty here was that we
needed our two path lengths to be the same to the order of the coherence length, in order to get a meaningful
interference pattern. We were able to work around this in the lab by setting the two path lengths equal manually,
but for an actual, portable version of the device, we would need either a laser with a very long coherence length,
or some method of altering the local path length.

2.2 The Feedback Circuit

The overall logical layout of the system is in figure (3). Basically, the preamp converts the current output of the
detector (proportional to intensity) into a voltage, which we then feed into the difference amplifier. We subtract
off a set voltage in the difference amplifier to get an error signal which averages out to zero, then we can run
that error signal through the feedback loops, so that an error signal produces a response in the piezo (the P
controller) and also to try and damp out random, high-frequency fluctuations (the I controller).

Outputs Current Pre-amp

Input: Current
Output: Voltage

Piezo Driver
Input: 0 − 10V

Output: 0 − 150V

Piezo
Voltage Adder

Photodiode

Integral

Feedback
Proportional
Feedback

Difference Amplifier

Figure 3: Global View

The feedback circuit is necessary because, as detailed above, it is possible that the position of the target will
change by more than a wavelength of the light. Without feedback, if that happens, it will cause us to lose our
lock. Instead, the feedback is set up so that the if an error signal develops, the circuit will drive the piezo to
compensate for the position change, so that the error signal goes back to 0.

2.2.1 Difference Amplifier

The difference amplifier, which computes the error signal from the input voltage and a set point, is in figure (4).
All the resistances were chosen to be about equal; the resistances shown are those we actually measured with the
multimeter. We would control the set point by tweaking the potentiometer so that the output signal averaged
to approximately 0V. That way, we wouldn’t get any large error buildup in the I controller.

2.2.2 Proportional Feedback

Our proportional feedback circuit is displayed in figure (5). This is the component that is primarily responsible
for implementing the negative feedback we require, which serves to drive the system back toward equilibrium.
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−15V

Output Signal
Input Signal from Preamp

+

−

4.62kΩ4.67kΩ

4.68kΩ

4.64kΩ

4.63kΩ

Figure 4: Difference Amplifier

+

−

VIN
VOUT

98.3kΩ

4.62kΩ

Figure 5: Proportional Feedback Circuit

5



The behavior of this circuit element can be described by the equation

VOUT = −

4.62kΩ

98.3kΩ
VIN (16)

In this case, our P controller actually reduces, rather than amplifies, the voltage input. This became necessary
due to the large gain in the preamp, and we needed to reduce the voltage in order to make it fit the input
parameters of the piezo driver.

2.2.3 Integral Feedback

We also designed an integral feedback loop to cancel out random noise due to factors such as the wavelength
dispersion of the laser. The layout is described in figure (6).

+

−

VIN VOUT

98.9kΩ

1.9nF

Figure 6: Integral Feedback Circuit

The operation of this element is described by the equation

VOUT =
1

98.9kΩ ∗ 1.9nF

∫

VINdt (17)

Essentially, the output voltage is the integral of the input voltage over time (restarting whenever the capacitor
is discharged), multiplied by (RC)−1.

2.2.4 Voltage Adder

We needed to add the integral and proportional feedback using the component in figure 2.2.4.

+

−

POUT

IOUT

4.63kΩ

4.63kΩ

4.64kΩ

VOUT

Figure 7: Voltage adder
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As with the difference amplifier, we tried to choose all resistances approximately equal, so that VOUT ≈ IOUT +
POUT .

2.2.5 Power Supply Smoothing

There is one more issue with our circuit: fluctuations in the power supply could make the behaviour of the
opamps unreliable. So, we attached capacitors to the power supplies of all opamps, as in figure (8). This way,

+

−

+15V

−15V

CS

CS

Figure 8: Op-Amp Power Supply

the capacitor tends to smooth out the power supply to the op-amps, and so they don’t introduce noise into the
system.

2.3 Recording

All this complicated circuitry creates an interesting problem — where do we record the signal? We have two
options: we can record the error signal that gets input into the P and I controllers, or we can record the output
of the P and the I controllers (the input of the piezo driver). If the feedback has a really high gain, then the
error signal will always be very small (because that’s what feedback circuits do), so it would be best to record
the signal at the output of the P and the I controllers. On the other hand, if the gain is relatively small, then
then the error signal will be larger compared to the output of the PI controller, and so you would want to read
the error signal.

Through testing, we found that our gain was in the mid-range, so for a better measurement, we’d need either
a lower gain (and then measure the error signal) or a higher gain (and then measure the PI output). But the
error signal still gave us clearer recording.

3 Future Modifications

3.1 Reset Circuit

In general, we can’t expect to fix our error signal perfectly at zero, which means that charge will build up on the
capacitor over time, reducing its effectiveness. We’d like to design a reset circut so that, once the capacitor in
the I controller gets above or below a certain voltage, it will discharge the capacitor. The circuitry would look
something like figure (9). Here, the output of the PI controller is fed into a couple of different op-amps that
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15V

15V

IOUT + POUT
FET

Figure 9: Reset Circuit with the I controller
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are basically difference amplifiers. The potentiometers can be set such that whenever the voltage goes above a
chosen VMAX or below a chosen VMIN it will create a positive voltage output on one of the op-amps, and that
will open the FET and discharge the capacitor in the I controller.

3.2 Portability

One of our original hopes was to build the apparatus such that it could be packaged in a small box and taken
around to use anywhere. However, we were unable to do so with the materials available and in the time we had.
Now that the circuitry and the required parameters of the device have been established, assembling a portable
version seems like a reasonable goal if/when we can come back to this project.
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