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Abstract—This paper proposes a general method for establish-
ing non-asymptotic converses in information theory via reverse
hypercontractivity of Markov semigroups. In contrast to the
blowing-up approach for strong converses, the proposed approach
is applicable to non-discrete settings, and yields the optimal order
of the second-order term in the rate expansion (square root of
the blocklength) in the regime of non-vanishing error probability.

I. INTRODUCTION

In information theory, a converse result shows the impos-
sibility of an operational task in a given parameter range.
For example, in data transmission, if an equiprobable mes-
sage Xn P tx1, . . . , xMu is transmissible through a random
transformation PY n|Xn with error probability ε, then Fano’s
inequality states that IpXn;Y nq ¥ p1�εq logM�hpεq. Fano’s
inequality has found great success in providing weak converses
in both single-user and multiuser information theory. However,
for many channels, a much sharper bound is possible: one
expects that IpXn;Y nq ¥ logM � opnq even when the error
probability ε is nonvanishing. Such strong converses are out of
reach of Fano’s inequality and require more delicate arguments.

Similar issues arise in problems throughout information
theory, and various techniques have been proposed to prove
strong converses (e.g. [1]–[5]) that are applicable in different
settings. The most powerful among these is the blowing-up
lemma (BUL) introduced in [3] and systematically exploited
in the classic text [6]. While much simpler methods may be
feasible in specific problems, the power of the BUL is that
it provides a canonical approach to proving strong converses
that is widely applicable to discrete memoryless source and
channel coding problems, and that remains the only known
method for proving strong converses in certain problems of
multiuser information theory (including all settings in [6] with
known single-letter rate region; see [6, Ch. 16/Discussion]). On
the other hand, the BUL approach has some key weaknesses:

 it is fundamentally restricted to finite output alphabets; and

 it is suboptimal in that it fails to yield the correct Op?nq

second-order term in the strong converse bound.
In contrast, other methods [1]–[5] based on binary hypothesis
testing and information spectrum methods can surmount these
issues, but have met with limited success in multiuser setups.

In this work we show that the above weaknesses of the
BUL approach can be overcome in a very general setting.
We thereby provide a canonical approach for proving strong
converses that, in addition to all the advantages of BUL, yields
a second-order term which is sharp both in n and in ε and
is applicable to continuous settings. Our key insight is that
the fundamental operation of BUL, the violent blowing up
of a set, is inherently suboptimal: one should instead gently

Author Emails: {jingbo,rvan,verdu}@princeton.edu
This work was supported in part by NSF Grants CCF-1016625, CCF-

0939370, and DMS-1148711, by ARO Grants W911NF-15-1-0479 and
W911NF-14-1-0094, and by the Center for Science of Information.

smooth out the indicator function of the set by applying to it a
Markov semigroup, exploiting functional forms of the relevant
information-theoretic inequalities. The role of BUL is now
played by the reverse hypercontractivity phenomenon [7], [8].

In order to develop our new approach in as pedagogical a
manner as possible, we begin by illustrating the method in
two simple problems: binary hypothesis testing (Section II)
and sharp Fano’s inequalities (Section III). While both these
problems are amenable to simpler methods, they are included
to illustrate the simplicity and unified nature of our approach.
The highlight of this paper is Section IV, where we obtain an
analogue (57) of the change-of-measure problem of [6] with
optimal second-order term. In contrast to Sections II–III, no
existing method for proving strong converses except BUL is
known to be applicable to this setting. Section V provides
a glimpse at applications of our new method in multiuser
information theory in discrete as well as Gaussian settings.
Among these, the side information problem (Section V-B) was
highlighted as an open problem in [9, Section 9.2]. Omitted
proofs and further applications can be found in [10].

Notation. In this paper, H�pYq denotes the set of nonnega-
tive measurable functions on Y and Hr0,1spYq is the subset of
H�pYq with range in r0, 1s. For a measure ν and f P H�pYq,
we write νpfq :� ³

fdν and }f}pp � }f}pLppνq �
³ |f |pdν,

while the measure of a set is denoted as νpAq. A random
transformation QY |X , mapping measures on X to measures
on Y , is viewed as an operator mapping f P H�pYq to
QY |Xpfq P H�pX q according to QY |Xpfqpxq :� QY |X�xpfq.

II. PRELUDE: BINARY HYPOTHESIS TESTING

Many converses in information theory (notably, the meta-
converse [5]) rely on the analysis of a certain binary hypothesis
test (BHT). The aim of this section is to introduce and illustrate
our method in the simplest BHT problem.

A. Blowing-Up Method: A Review

Consider probability distributions P and Q on Y . Let f P
Hr0,1spYq be the probability of deciding the hypothesis P upon
observing y. Denote by πP |Q � Qpfq the probability that P is
decided when Q is true and vice versa by πQ|P � 1 � P pfq.
By the data processing property of the relative entropy

DpP }Qq ¥ dpπQ|P }1� πP |Qq (1)

¥ p1� πQ|P q log 1
πP |Q

� hpπQ|P q, (2)

where dp�}�q is the binary relative entropy function on r0, 1s2.
In the special case of product measures P Ð Pbn, QÐ Qbn,
and πQbn|Pbn ¤ ε P p0, 1q, (2) yields

πPbn|Qbn ¥ exp
�
�nDpP }Qq

1� ε
�Op1q



. (3)

However, this bound is known to be suboptimal: the Chernoff-
Stein Lemma implies πPbn|Qbn ¥ expp�nDpP }Qq � opnqq,
a strong converse, while (3) only yields a weak converse.



In the special case of deterministic tests (f � 1A for some
A � Yn), (3) can be improved by means of a remarkable
property enjoyed by product measures: a small blowup of a set
of nonvanishing probability suffices to increase its probability
to nearly 1 [3]. The following “modern version” is due to
Marton [11]; see also [12, Lemma 3.6.2].

Blowing-up Lemma. Denote the r-blowup of A � Yn by

Ar :� tvn P Yn : dnpvn,Aq ¤ ru, (4)

where dn is the Hamming distance on Yn. Then, for any c ¡ 0

PbnpArq ¥ 1� e�c
2

for r �
b

n
2

�b
ln 1

PbnpAq � c



. (5)

Moreover, as every element of Ar is obtained from an
element of A by changing at most r coordinates, a simple
counting argument [3, Lemma 5] shows that

QbnpArq ¤ Crpr � 1q
�
n

r



QbnpAq (6)

� exppnhpr{nq �OprqqQbnpAq (7)

for r P Ωp?nq X opnq, where C � |Y|{miny Qpyq.
Theorem 1. If |Y|   8 and πQbn|Pbn ¤ ε P p0, 1q, any
deterministic test between Pbn and Qbn on Yn satisfies

πPbn|Qbn ¥ exp
�
�nDpP }Qq �Op?n log3{2 nq

	
. (8)

The proof consists of: using, in lieu of (1),

nDpP }Qq ¥ d
�
PbnpArq}QbnpArq

�
; (9)

applying (5) and (7); and taking the optimal r � Θp?n log nq.
Of course, there are far easier methods to prove the converse

part of the Chernoff-Stein Lemma than through Theorem 1,
which also improve the suboptimal sublinear term in the
exponent of (8). Indeed, our aim is to lower bound QbnpAq
given PbnpAq ¥ 1 � ε. By the Neyman-Pearson lemma, the
extremal A is a sublevel set of ıPbn}Qbn :� log dPbn

dQbn , which
is a sum of i.i.d. random variables under Pbn. The optimal rate
of the second-order term in (8) is thus the central limit theorem
rate Op?nq. Such an optimal bound is fundamentally beyond
the blowing-up method: simple examples show that both (5)
and (7) are essentially sharp and the choice r � Θp?n log nq
is optimal. In other classical applications of BUL such as the
settings in Section III and IV, the suboptimal Op?n log3{2 nq
term emerges for a similar reason. Moreover, in [10] we argue
that this sub-optimality cannot be overcome by generalizing
BUL to other set transformations A ÞÑ Ã: no such argument
can yield a second-order term better than Op?n log nq.
B. New Approach via Reverse Hypercontractivity

In this work we propose a gentler alternative to BUL that
achieves the optimal Op?nq second-order rate, while retain-
ing the applicability of BUL to multiuser information theory
problems. Instead of applying the data processing theorem as
in (1) and (9), we note that, by the variational formula for the
relative entropy (e.g. [12, (2.4.67)])1,

DpP }Qq ¥ P pln gq � lnQpgq, @g P H�pYq. (10)

Tempting as it is, the choice g Ð 1A in (10) is dismal since
generally P pln 1Aq � �8. Inspired by BUL, we seek a map
T : H� Ñ H� so that P plnT1Aq is finite, yet QpT1Aq is

1While the bases of the information theoretic quantities and exp were
arbitrary up to here, Henceforth they are natural.

not much larger than QpAq. That is, rather than blowing up
the set A, we seek a positivity improving map T that maps the
indicator 1A to a strictly positive function. Markov semigroups
appear to be tailor-made for this purpose. We say pTtqt¥0 is a
simple semigroup2 with stationary measure P if

Tt : H�pYq Ñ H�pYq, f ÞÑ e�tf � p1� e�tqP pfq. (11)

In the i.i.d. case P Ð Pbn we consider their tensor product

Tt :� re�t � p1� e�tqP sbn (12)

The positivity-improving property of Tt is precisely quantified
by the reverse hypercontractivity phenomenon discovered by
Borell [7] and recently generalized by Mossel et al. [8].

Theorem 2. [8] Let pTtqt¥0 be a simple semigroup (11) or an
arbitrary tensor product of simple semigroups. Then for all3

0 ¤ q   p   1, f P H� and t ¥ ln 1�q
1�p ,

}Ttf}q ¥ }f}p. (13)

When Tt is defined by (12), for any f P Hr0,1spYq,
PbnplnTtfq � ln }Ttf}L0pPbnq (14)

¥ ln }f}L1�e�t pPbnq (15)

¥ 1
1�e�t lnPbnpfq (16)

¥ �
1
t � 1

�
lnPbnpfq, (17)

where (17) follows from et ¥ 1� t. On the other hand, instead
of the counting argument (7), in the present setting we use

QbnpTtfq � Qbnppe�t � p1� e�tqP qbnfq (18)
¤ Qbnppe�t � αp1� e�tqQqbnfq (19)
� pe�t � αp1� e�tqqnQbnpfq (20)

¤ epα�1qntQbnpfq, (21)

for all f P H�pYq, where α :� }dP
dQ}8 ¥ 1.

Theorem 3. If πQbn|Pbn ¤ ε P p0, 1q, any (possibly stochas-
tic) test between Pbn and Qbn satisfies

πPbn|Qbn ¥ p1 � εq exp

�
�nDpP }Qq � 2

c
n
��� dP
dQ

���
8

ln 1
1�ε



.

(22)

The proof consists of: g Ð Ttf in (10) where fpyq is the
probability that the test decides P upon observing y; applying
(17) and (21); optimizing over t ¡ 0.

Remark 1. It is instructive to compare the blowing-up and
semigroup operations. Note that

1Ar pxq � sup
|S|¤r

sup
pziqiPS

1AppziqiPS , pxiqiPScq, (23)

while expanding (12) gives (cf. (31) below)

Tt1Apxq � Er1AppXiqiPS , pxiqiPScqs (24)

where Xi � P are i.i.d. and S is uniformly distributed over sets
of size |S| � Binompn, 1 � e�tq. Thus the semigroup can be
viewed as an analogue of blowing-up where, rather than max-
imize the indicator over subsets of r coordinates, we average
over subsets of � np1�e�tq coordinates. Unlike the maximum,
averaging increases small values of f (positivity-improving)

2Readers who are unfamiliar with semigroups may safely ignore this
terminology; while the semigroup property plays an important role in the proof
of Theorem 2, it is not used directly in this paper.

3We define }f}L0pP q :� limqÓ0 }f}LqpP q � exppP pln fqq.



while preserving the total mass PbnpTtfq � Pbnpfq, so that
QbnpTtfq does not increase too much.

We note that our new method draws on a similar philosophy
as BUL, but enjoys the following advantages:


 Achieves the optimal Op
b
n log 1

1�ε q second-order rate,
which is sharp both as nÑ8 and as εÑ 1 [10];


 Purely measure-theoretic in nature: finiteness of the alphabet
is sufficient, but not necessary, for Theorem 3. In fact,
our approach extends readily to continuous settings such
as Gaussian channels, cf. Section III-B. In contrast, while
analogues of the blowing-up property (5) exist for many
other measures, no analogue of the counting estimate (7)
can hold in continuous settings as the blow-up of a set of
measure zero may have positive measure.

III. OPTIMAL SECOND-ORDER FANO’S INEQUALITY

A. Bounded Probability Density Case

Consider a random transformation PY |X . For any x P X ,
denote by pTx,tqt¥0 the simple Markov semigroup:

Tx,t :� e�t � p1� e�tqPY |X�x. (25)

Motivated by the steps (18)-(21), for α P r1,8q, t P r0,8q
and a probability measure ν on Y , define a linear operator
Λνα,t : H�pYnq Ñ H�pYnq by

Λνα,t :�
n¹
i�1

pe�t � αp1� e�tqνpiqq, (26)

where νpiq : HpYnq Ñ HpYnq is the linear operator that
integrates the i-th coordinate with respect to ν. Since νpiq1 � 1,

Λνα,t1 �
�
e�t � αp1� e�tq�n ¤ epα�1qnt. (27)

Lemma 4. Fix pPY |X , ν, tq. Suppose that
α :� sup

x

���dPY |X�x

dν

���
8
P r1,8q; (28)

Txn,t :� bni�1Txi,t. (29)

Then for n ¥ 1 and f P H�pYnq,
sup
xn

Txn,tf ¤ Λνα,tf. (30)

Proof. For any xn P Xn, observe that

Txn,tf �
n¹
i�1

re�t � p1 � e�tqP piq
Y |X�xi

sf (31)

�
¸

S�t1,...,nu

e�|S
c|tp1 � e�tq|S|

�¹
iPS

P
piq
Y |X�xi

�
pfq,

The result then follows from (26) and (28).

Theorem 5. Fix PY |X and positive integers n and M . Suppose
(28) holds for some probability measure ν on Y . If there exists
c1, . . . , cM P Xn and disjoint D1, . . . ,DM � Yn such that

M¹
m�1

P
1
M
Y n|Xn�cm

pDmq ¥ 1� ε, (32)

then

IpXn;Y nq ¥ lnM � 2
b
pα� 1qn ln 1

1�ε � ln 1
1�ε , (33)

where Xn is equiprobable on tc1, . . . , cMu, Y n is its output
from PY n|Xn :� Pbn

Y |X , and α is defined in (28).

Proof. Let fm :� 1Dm
, m � 1, . . . ,M . Fix some t ¡ 0 to be

optimized later. Observe that

IpXn;Y nq � 1
M

M̧

m�1

DpPY n|Xn�cm
}PY nq (34)

¥ 1
M

M̧

m�1

PY n|Xn�cm
pln Λνα,tfmq

� 1
M

M̧

m�1

lnPY npΛνα,tfmq (35)

where (35) is from the variational formula (10). We can lower
bound the first term of (35) by

1
M

M̧

m�1

ln }Λνα,tfm}L0pPY n|Xn�cm
q

¥ 1
M

M̧

m�1

ln }Tcm,tfm}L0pPY n|Xn�cm
q (36)

¥ �
�

ln 1
1�ε

	 �
1 � 1

t

�
, (37)

where (36)-(37) follows similarly as (14)-(17). For the second
term in the right of (35), using Jensen’s inequality and (27),

� 1
M

M̧

m�1

lnPY npΛνα,tfmq ¥ � lnPY n

�
1
M

M̧

m�1

Λνα,tfm

�
(38)

¥ lnM � pα� 1qnt. (39)

The result then follows by optimizing t.

Remark 2. A novel aspect of Theorem 5 is the “geometric
average criterion” in (32), which is weaker than the maximal
error criterion but stronger than the average error criterion.
Under the average error criterion, one cannot expect that
IpXn;Y nq ¥ lnM�opnq as it would contradict [13, Rem. 5].

When the output alphabet Y is finite, Theorem 5 applies with
α � |Y| by choosing ν to be equiprobable on Y . However,
unlike BUL-based approaches, Theorem 5 extends far beyond
the finite alphabet setting. In particular, Theorem 5 applies to
Gaussian, Poisson, or exponential channels under an amplitude
constraint, for which it is readily seen that the bounded density
assumption (28) holds for a suitable choice of ν.

B. Gaussian Case

In this section we consider Gaussian channels, i.e.,
PY |X�x � N px, 1q. As noted above, Theorem 5 applies imme-
diately in this case under an amplitude constraint |x| ¤ xmax

(choose ν � Np0, 2q, say). However, we will show in this
section that the conclusion of Theorem 5 remains valid even
in the absence of an amplitude constraint, in which case (28)
is violated. To surmount this problem, it will be convenient to
replace (29) in the Gaussian setting by the Ornstein-Uhlenbeck
semigroup with stationary measure N pxn, Inq:
Txn,tfpynq :� Erfpe�tyn � p1� e�tqxn �

a
1� e�2tV nqs

(40)

for f P H�pRnq, where V n � N p0n, Inq. In this setting, (13)
holds under the even weaker assumption t ¥ 1

2 ln 1�q
1�p [7].

The proof proceeds a little differently than in the discrete
case. Here, the analogue of Λνα,t in (26) is simply T0n,t.
Instead of Lemma 4, we will exploit a simple change-of-
variable formula: for any f ¥ 0, t ¡ 0, xn P Rn, we have

PY n|Xn�xnplnT0n,tfq � PY n|Xn�e�txnplnTe�txn,tfq, (41)

which can be verified from the definition in (40). For later ap-
plications in broadcast channels, we consider a slight extension
of the setting of Theorem 5 to allow stochastic encoders.

Theorem 6. Let PY |X�x � N px, σ2q. Assume that there exist

φ : t1, . . . ,Mu � t1, . . . , Lu Ñ Rn, (42)



and disjoint sets pDwqMw�1 such that¹
w,v

P
1
ML
Y n|Xn�φpw,vqpDwq ¥ 1� ε (43)

where ε P p0, 1q. Then

IpW ;Y nq ¥ lnM �
b

2n ln 1
1�ε � ln 1

1�ε (44)

where pW,V q is equiprobable on t1, . . . ,Mu � t1, . . . , Lu,
Xn :� φpW,V q, and Y n is the output from PY n|Xn :� Pbn

Y |X .

Proof. By the scaling invariance of the bound it suffices to con-
sider the case of σ2 � 1. Let fw � 1Dw

for w P t1, . . . ,Mu.
Put X̄n � etXn and Ȳ n the corresponding output from the
same channel. Note that for each w,

DpPȲ n|W�w}PȲ nq

¥ 1
L

Ļ

v�1

PY n|Xn�etφpw,vqplnT0n,tfwq � lnPȲ npT0n,tfwq

� 1
L

Ļ

v�1

PY n|Xn�φpw,vqplnTφpw,vq,tfwq � lnPȲ npT0n,tfwq
(45)

where the key step (45) used (41). The summand in the first
term of (45) can be bounded using reverse hypercontractivity
for the Ornstein-Uhlenbeck semigroup (40) as

PY n|Xn�φpw,vqplnTφpw,vq,tfwq ¥ 1
1�e�2t lnPY n|Xn�φpw,vqpfwq

thus from the assumption (43),
1
ML

¸
w,v

PY n|Xn�etφpw,vqplnT0n,tfwq ¥ � 1
1�e�2t ln 1

1�ε .

On the other hand, by Jensen’s inequality,

1
M

M̧

w�1

lnPȲ npT0n,tfwq ¤ lnPȲ n

�
T0n,t

1
M

M̧

w�1

fw

�
¤ ln 1

M

where the last step uses
°M
w�1 fw ¤ 1. Thus taking 1

M

°M
w�1

on both sides of (45), we find

IpW ; Ȳ nq ¥ lnM � 1
1�e�2t ln 1

1�ε . (46)

Moreover, let Gn � N p0n, Inq be independent of Xn,

hpȲ nq � hpetXn �Gnq (47)
� hpXn � e�tGnq � nt (48)
¤ hpY nq � nt, (49)

where (49) can be seen from the entropy power inequality. On
the other hand for each w we have

hpȲ n|W � wq � hpY n|W � wq
� IpȲ n;Xn|W � wq � IpY n;Xn|W � wq ¥ 0 (50)

where (50) can be seen from [14, Theorem 1]. The result
follows from (46), (49), (50) and by optimizing t.

IV. OPTIMAL SECOND-ORDER CHANGE-OF-MEASURE

We now revisit a change-of-measure problem considered
in [3] in proving the strong converse of source coding with
side information (cf. Section V-B). For a “combinatorial”
formulation, which amounts to assigning an equiprobable dis-
tribution on the strongly typical set, see [6, Theorem 15.10].
Variations on such an idea have been applied to the “source and
channel networks” in [6, Chapter 16] under the name “image-
size characterizations”. Given a random transformation QY |X ,

measures ν on Y and µn on Xn, we want to lower bound
the νbn-measure of A � Yn in terms of the µn-measure of
its “ε-preimage” under QY n|Xn :� Qbn

Y |X . More precisely, for
given c ¡ 0, ε P p0, 1q find an upper bound on

sup
A

 
lnµnrxn : QY n|Xn�xnpAq ¡ 1� εs � c ln νbnpAq( .

Definition 7. Fix µ on X , ν on Y , and QY |X . For c P p0,8q
dpµ,QY |X , ν, cq :� sup

PX : PX!µ
tcDpPY }νq �DpPX}µqu (51)

with PX Ñ QY |X Ñ PY .4 Equivalently (see [15] or [10])
(51) � sup

fPH�pYq

!
lnµpecQY |X pln fqq � c ln νpfq

)
. (52)

Obeserve that given QXY , the largest c ¡ 0 for which
dpQX , QY |X , QY , cq � 0 is the reciprocal of the strong
data processing constant; see the references in [15]. If in
definition (51) for dpµn, Qbn

Y |X , ν
bn, cq we choose PXn to be

µn conditioned on B :� txn : QY n|Xn�xnpAq ¡ 1 � εu,
i.e., PXnpCq :� µnpBXCq

µnpBq , @C, then standard computations
(essentially [3, (19)-(21)]; or see [10]) show that when |ν| � 1,

lnµnrxn : QY n|Xn�xnpAq ¡ 1� εs � cp1� εq ln νbnpAq
¤ dpµn, Qbn

Y |X , ν
bn, cq � c ln 2. (53)

Note the undesired second ε in (53), which would result in a
weak converse. For finite Y , [3] used the blowing-up lemma to
strengthen (53). For the same reason discussed in Section II,
even using modern results on concentration of measure, one
can only obtain Op?n log3{2 nq in the second-order term:

lnµnrxn : QY n|Xn�xnpAq ¡ 1� εs � c ln νbnpAq
¤ dpµn, Qbn

Y |X , ν
bn, cq �Op?n log3{2 nq. (54)

If µn � Qbn
X , then by tensorization ([15] or [10])

dpQbn
X , Qbn

Y |X , ν
bn, cq � n dpQX , QY |X , ν, cq, (55)

we see the right side of (53) grows linearly with slope
dpQX , QY |X , ν, cq, which is larger than desired (i.e. when
applied to the source coding problem in Section V-B would
only result in an outer bound). Luckily, when |X |   8,
it was noted in [3] that if µn is the restriction of Qbn

X on
the QX -strongly typical set5, then the linear growth rate of
dpµn, Qbn

Y |X , ν
bn, cq is the following (desired) quantity:

Definition 8. Given QX , QY |X , measure ν on Y and c P
p0,8q, define

d�pQX , QY |X , ν, cq
:� sup

PUX : PX�QX

 
cDpPY |U }ν|PU q �DpPX|U }QX |PU q

(
where PUXY :� PUXQY |X , and DpPX|U }QX |PU q :�³
DpPX|U��}QXqdPU denotes the conditional relative entropy.

It follows from Definitions 7, 8 that d�pQX , QY |X , ν, cq ¤
dpQX , QY |X , ν, cq. For general alphabets, we can extend the
idea and let µn � Qbn

X

��
Cn

for some Cn with 1�Qbn
X pCnq ¤ δ

for some δ P p0, 1q independent of n; this will not affect its
information-theoretic applications in the non-vanishing error
probability regime. We show in the discrete and the Gaussian
cases that we can choose Cn so that

dpµn, Qbn
Y |X , ν

bn, cq ¤ nd�pQX , QY |X , ν, cq �Op?nq. (56)

4In Definitions 7 and 8 we adopt the convention 8�8 � �8.
5The restriction µ|C of a measure µ on a set C is µ|CpDq :� µpC XDq.



Using the semigroup method, we can also improve the
Op?n log3{2 nq term in (54) to Op?nq in the discrete and
the Gaussian cases. This combined with (56) implies

lnµnrxn : QY n|Xn�xnpAq ¡ 1� εs � c ln νbnpAq
¤ nd�pQX , QY |X , ν, cq �Op?nq. (57)

While the original proof [3] used a data processing argument,
just as (2), to get (53), the present approach uses the functional
inequality (52), just as (10). In the discrete case we have:

Theorem 9. Consider QX a probability measure on a finite
set X , ν a probability measure on Y , and QY |X . Let

βX :� 1{min
x
QXpxq P r1,8q, (58)

α :� sup
x

���dQY |X�x

dν

���
8
P r1,8q. (59)

Let c P p0,8q, η, δ P p0, 1q and n ¡ 3βX ln |X |
δ . We can

choose some set Cn with Qbn
X pCnq ¥ 1 � δ, such that for

µn :� Qbn
X

��
Cn

we have

lnµnrxn : QY n|Xn�xnpfq ¥ ηs � c ln νbnpfq
¤ nd�pQX , QY |X , ν, cq �A

?
n� c ln 1

η
(60)

for any f P Hr0,1spYnq, where

A :� lnpαcβc�1
X q

b
3βX ln |X |

δ
� 2c

b
pα� 1q ln 1

η
. (61)

The proof of Theorem 9 relies on some ideas in the proof
of Theorem 5; in particular the properties (27) and (30) for
the operator Λνα,t play a critical role. For a counterpart of
Theorem 9 for Gaussian sources, see [10].

V. APPLICATIONS

A. Output Distribution of Channel Codes; Broadcast Channels

Consider a stationary memoryless channel PY |X with ca-
pacity C. If |Y|   8 then by the steps [13, (64)-(66)] and
our Theorem 5 we conclude that an pn,M, εq code under the
maximal error criterion with deterministic encoders satisfies

DpPY n}P �
Y nq ¤ nC � lnM � 2

b
|Y|n ln 1

1�ε
� ln 1

1�ε
. (62)

This implies that the Burnashev condition

sup
x,x1

��� dPY |X�x

dPY |X�x1

���
8
  8 (63)

in [13, Theorem 6] (cf. [12, Theorem 3.6.6]) is not neces-
sary. Using the blowing-up lemma, [13, Theorem 7] bounded
DpPY n}P �

Y nq without requiring (63), but with a suboptimal
Op?n log3{2 nq second-order term. Also note that in our
approach |Y|   8 can be weakened to a bounded density
assumption (28), and the maximal error criterion assumption
can be weakened to the geometric average criterion (32).

Consider a Gaussian broadcast channel where the SNR in
the two component channels are S1, S2 P p0,8q. Suppose there
exists an pn,M1,M2, εq-maximal error code. Using Theorem 6
and the same steps in the proof of the weak converse (see
e.g. [16, Theorem 5.3]), we immediately obtain

lnM1 ¤ nCpαS1q �
b

2n ln 1
1�ε � ln 1

1�ε ; (64)

lnM2 ¤ nC
�
p1�αqS2
αS2�1

	
�
b

2n ln 1
1�ε � ln 1

1�ε , (65)

for some α P r0, 1s, where Cptq :� 1
2 lnp1� tq. An alternative

proof of the strong converse via information spectrum, yielding
less precise (e.g. suboptimal dependence on ε and the signal
to noise ratio) bounds on the sublinear terms, is given in [17].

Converses under the average error criterion can be obtained by
codebook expurgation (e.g. [16, Problem 8.11]).

An Op?nq second-order counterpart for the discrete broad-
cast channel is given in [10].

B. Source Coding with Compressed Side Information

Consider a stationary memoryless discrete source with
per-letter distribution QXY . Let ε P p0, 1q and n ¥
3βX ln 2p1�εq|X |

1�ε , where βX is defined in (58). Suppose that
there exist encoders f : Xn Ñ W1 and g : Yn Ñ W2 and
decoder V : W1 �W2 Ñ Ŷn such that

PrY n � Ŷ ns ¤ ε, (66)

Using Theorem 9 plus essentially the same arguments as [3,
Theorem 3], we can show that for any c P p0,8q,

ln |W1| � c ln |W2|
¥ n inf

U : U�X�Y
tcHpY |Uq � IpU ;Xqu

� ?
n

�
lnp|Y|cβc�1

X q
b

3βX ln 4|X |
1�ε

� 2c
b
|Y| ln 2

1�ε



� p1 � cq ln 2

1�ε
. (67)

Note that the first term on the right side of (67) corresponds to
the rate region (see e.g. [16, Theorem 10.2]). Using the BUL
[3], one can only bound the second term as Op?n log3{2 nq,
which is suboptimal. A counterpart for Gaussian sources under
the quadratic distortion is given in [10].
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