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Abstract

We answer this question by comparing te risk-neutral density estimated in complete
markets from cross-section of S&P 500 option prices to the risk-neutral density inferred
from the time series density of the S&P 500 index. If investors are risk-averse, the latter
density is di!erent from the actual density that could be inferred from the time series of
S&P 500 returns. Naturally, the observed asset returns do not follow the risk-neutral
dynamics, which are therefore not directly observable. In contrast to the existing
literature, we avoid making any assumptions on investors' preferences, by comparing two
risk-adjusted densities, rather than a risk-adjusted density from option prices to an
unadjusted density from index returns. Our only maintained hypothesis is a one-factor
structure for the S&P 500 returns. We propose a new method, based on an empirical
Girsanov's change of measure, to identify the risk-neutral density from the observed
unadjusted index returns. We design four di!erent tests of the null hypothesis that the
S&P 500 options are e$ciently priced given the S&P 500 index dynamics, and reject it.
By adding a jump component to the index dynamics, we are able to partly reconcile the
di!erences between the index and option-implied risk-neutral densities, and propose
a peso-problem interpretation of this evidence. � 2001 Elsevier Science S.A. All rights
reserved.
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1. Introduction

Do investors rationally forecast future stock price distributions when they
price options? Provided that markets are dynamically complete, arbitrage
arguments tie down option prices to the prices of primary assets. We may
therefore expect that option prices will accurately re#ect the risk implicit in the
stochastic dynamics of their underlying assets } and nothing else. Is this the case
empirically, at least within the framework of a given class of models?

An arbitrage-free option pricing model can be reduced to the speci"cation of
a density function assigning probabilities to the various possible values of the
underlying asset price at the option's expiration. This density function is named
the state-price density (SPD), due to its intimate relationship to the prices of
Arrow}Debreu contingent claims.� A number of econometric methods are now
available to infer SPDs from option prices. These methods deliver SPD esti-
mates which either relax the Black}Scholes (1973) and Merton (1973) log-normal
assumption in speci"c directions,� or explicitly incorporate the deviations from
the Black}Scholes model when estimating the option-implied SPD and pricing
other derivative securities.� One of the main attractions of the latter methods is
that they produce direct estimates of the Arrow}Debreu state prices implicit in
the market prices of options. Their main drawback is that they empirically
ignore the evidence contained in the observed time series dynamics of the
underlying asset } which, in theory, should indeed be redundant information.

The goal of this paper is to examine whether the information contained in the
cross-sectional option prices and the information contained in the time series of
underlying asset values are empirically consistent with each other, i.e., whether
option prices are rationally determined, under the maintained hypothesis that
the only source of risk in the economy is the stochastic nature of the asset price.
More concretely, does the S&P 500 option market correctly price the S&P 500
index risk? It is certainly tempting to answer this question simply by comparing
features of the SPD implied by S&P 500 option prices to features of the
observable time series of the underlying asset price.
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In fact, previous studies in the literature have always compared the observed
option data to the observed underlying returns data, i.e., a risk-neutral density to
an actual density. Naturally, in the case where all the Black}Scholes assumptions
hold, the comparison between the option-implied and the asset-implied SPDs,
both log-normal with the same mean, reduces to a comparison of implied
volatilities, assumed common across the cross-section of options, to the index's
time series realized volatility over the life of the option.� More generally, the
well-documented presence in option prices of an &implied volatility smile', whereby
out-of-the-money put options are more expensive than at-the-money options,
directly translate into a negatively skewed option-implied SPD. At the same time,
there is evidence in the S&P 500 time series of time-varying volatility, generally
negatively correlated with the index changes, as well as jumps; both of these e!ects
can give rise to a negatively skewed SPD. We argue in this paper that no conclu-
sions regarding the rationality of option prices should be drawn from putting
these two pieces of evidence together. The distribution of the underlying asset
values that can be inferred from its observed time series, and the SPD implied by
option prices, are not comparable without assumptions on investors' preferences.

In fact, it is possible to use the exact same data to determine the representative
preferences that are implicit in the joint observations on option and underlying
asset prices.� In other words, the extra degree of freedom introduced by prefer-
ences can &reconcile' any set of option prices with the observed time series
dynamics of the underlying asset (up to suitable restrictions). Thus it is always
possible to conclude that the options are rationally priced from a comparison of
the option-implied SPD and the actual density of index returns, when prefer-
ences (albeit strange ones) can be found that legitimize the observed option
prices. Yet very little is known about aggregate investors' preferences } even
within the class of isoelastic utility functions, there is wide disagreement in the
literature regarding what constitutes a reasonable value of the coe$cient of
relative risk aversion: is the coe$cient of relative risk aversion equal to 5 or
250?� Therefore there is no reason a priori to compare the dynamics of the
underlying asset that are implied by the option data to the dynamics implied by
the actual time series, unless for some reason one holds a strong prior view on
preferences. Consequently, the combination of the facts that the observed S&P
500 returns are negatively skewed and that there exists a persistent implied
volatility smile, cannot be used as evidence either in favor or against the
rationality of option prices.
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In fact, the two SPDs need not even belong to the same parametric family,
meaning that comparisons of their variances alone, as would be appropriate
under the Black}Scholes assumptions, can lead to type-II errors (if the variances
happen to be equal but other features of the densities are distinct) and/or type-I
errors (if the SPDs are in fact equal but the variance estimates are inconsistent
due to misspeci"cation of the assumed parametric form). For instance, Lo and
Wang (1995) give an example of misspeci"ed variance estimates in a simpler
context. The di$culty at this point is that we do not observe the data that would
be needed to infer directly the time-series SPD, since we only observe the actual
realized values of the S&P 500, not its risk-neutral values.

The main novelty in this paper is to show that it is nevertheless possible to use
the observed asset prices to infer indirectly the time-series SPD that should be
equal to the option-implied cross-sectional SPD. We rely on Girsanov's charac-
terization of the change of measure from the actual density to the SPD: the
di!usion function of the asset's dynamics is identical under both measures, only
the drift needs to be adjusted. This fact is of course not surprising from
a theoretical point of view, but had not been exploited empirically. Our econo-
metric strategy is to start by estimating the di!usion function from the observed
S&P 500 index returns. Then by Girsanov's Theorem, this is the same di!usion
function as the di!usion function of the risk-neutral S&P 500 returns. What
remains to be done is to adjust the drift to re#ect the risk-neutral rate of return.
Fortunately, it turns out that this drift can be inferred from the observed prices
of market-traded instruments. The price of an S&P 500 futures contract gives
the risk-neutral expected value of the S&P 500 (cash) index at the contract's
expiration. From these we obtain the risk-neutral drift rate of the S&P 500
index. Having fully characterized the S&P 500 risk-neutral dynamics, it is then
easy to obtain the corresponding time-series SPD. We already discussed how to
extract cross-sectional SPDs from option prices. By comparing the two SPDs
} cross-sectional and time-series } our methodology allows us to assess whether
options are priced rationally, without making assumptions about, or having to
estimate, the representative preferences that are embodied in the market prices
of options.

We examine, using every option traded on the S&P 500 index between April
1986 and December 1994, whether the rationality condition that the two SPDs
be equal holds empirically. Because we construct an exactly identi"ed system
with separate identi"cation of the cross-sectional and time-series SPDs, the
equality between the two SPDs becomes an over-identifying restriction. As such,
that restriction is testable. Our approach can be contrasted to the situation
where the option-implied SPD is compared to the actual distribution implied by
the time-series of asset values: such a system can only be identi"ed through
assumptions on preferences. In that case, no implications for market e$ciency
are left to be tested since all the information contained in the data has already
been exploited just to construct the estimators. To obtain over-identifying
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�Of course, it might be di$cult to justify in practice why option markets enjoy such large trading
volumes if they truly were redundant assets. Our approach shares this limitation with the entire
literature that relies on market completeness to tie down the prices of di!erent assets.

restrictions, even more stringent restrictions must be imposed on preferences,
which opens the door to a potentially severe joint hypothesis problem.

In addition to escaping the need to specify preferences, we also wish to avoid a
second type of joint hypothesis problem: when we compare the two SPDs, we make
as few assumptions as possible on the cross-section of options and the dynamics of
the underlying asset. For that reason, we rely on nonparametric estimates (see
AmK t-Sahalia (1996) for a di!erent nonparametric approach to derivative pricing).
Our test for rationality is therefore robust to the biases arising from the potential
misspeci"cation of the option pricing model, the data-generating process for the
asset values, and the speci"cation of investors' preferences. In e!ect, our only
maintained assumption is that markets are dynamically complete,�with the aggreg-
ate risk solely driven by the variations in the S&P 500 index.

We "nd empirically that the option-implied SPDs exhibit systematic excessive
skewness and kurtosis with respect to the index-implied SPDs and reject the null
hypothesis that the S&P 500 options can be e$ciently priced within the limited
context of a univariate speci"cation with no jumps. This is not just restating that
the option data exhibit an implied volatility smile, which is of course well-known
by now. Instead this demonstrates that the implied volatility smile is incompat-
ible with the dynamics of the S&P 500 returns } as captured by a univariate
di!usion } independently of investors' preferences. We then design out-of-
sample trading schemes to exploit the SPD di!erences and show that they
capture superior pro"ts, due to the irrationality of option prices (at least during
the period under consideration). We also document that the high Sharpe ratios
achieved by these trading schemes demand excessive variation in investors'
marginal utilities, in the sense of Hansen and Jagannathan (1991).

In a sense, we have taken the univariate speci"cation as far as it could go by
being #exible in every possible dimension (nonparametric on the speci"cation of
the dynamic process, no assumptions whatsoever on representative preferences).
The "rst main conclusion of our paper is that this model, even pushed to its most
#exible limits, simply cannot explain the joint time series dynamics of S&P 500
returns and cross-sectional properties of S&P 500 option prices. Moving away
from the restrictive nature of the univariate di!usion speci"cation, we are able to
partly reconcile the di!erences between the index and option implied SPDs by
adding a jump component to the index dynamics. We propose a peso-problem
interpretation of this evidence: cross-sectional option prices capture a premium
as compensation for the risk of a market crash, but actual realizations of that
jump are too infrequent to be consistently observed and re#ected in estimates
drawn from the time series of asset returns. The prediction of this model is that
time series SPD estimates should be insu$ciently skewed and leptokurtic
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	See the conclusion for a discussion of what the over-identifying restrictions would be in this case.

relative to their cross-sectional counterparts, which is exactly what we found
empirically. In future work, we intend to incorporate stochastic volatility in
addition to jumps and test the ability of that broader speci"cation to fully
reconcile the joint observations on option and asset returns.	

The paper is organized as follows. In Section 2 we present a brief review of the
no-arbitrage paradigm, propose an estimation strategy for the cross-sectional
and time-series SPDs and construct a statistical test of the null hypothesis that
the option-implied and index-implied SPDs are identical. We apply our
estimators to the S&P 500 options and index prices in Section 3. We conclude
in Section 4. Technical assumptions and results are in the Appendix.

2. Cross-sectional vs. time-series SPDs

2.1. Implications of no-arbitrage

Suppose that the uncertainty in the economy is driven by the stochastic values
S
�
of an underlying asset at a future date ¹. There exists a riskless cash account

which can be used to borrow and lend without restrictions between dates t and
¹"t#� at the instantaneous rate of return r

��� . During that period, the asset
pays dividends continuously at rate �

��� . For simplicity, we take r
��� and �

��� to be
nonstochastic. When markets are frictionless, a path-independent derivative
security with payo! �(S

�
) at ¹ can be perfectly replicated by a dynamic trading

strategy involving the asset and a riskless cash account, i.e., the derivative is
a redundant asset which can be priced by arbitrage.

In order to rule out arbitrage opportunities among the asset, the derivative
and the cash account, Harrison and Kreps (1979) showed that the pricing
operator mapping payo!s at date ¹ into prices at date t must be linear,
continuous and strictly positive. The Riesz representation theorem then charac-
terizes the derivative price as an integral, or expectation operator, applied to the
derivative's payo! function. The SPD is the density function fH

�
(S

�
, S

�
, �, r

��� , ����)
to be used in the expectation, i.e.:

e
���� � ��
��




�(S
�
) fH

�
(S

�
, S

�
, �, r

��� , ���� ) dS�
(2.1)

is the price of a European-style derivative security with a single liquidating
payo! �(S

�
).

If we are willing to be more speci"c about the nature of the uncertainty in S
�
,

we can further characterize the SPD. Suppose that the vector S of n
�
asset prices
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� In that case, the system of asset prices S in (2.2) supports an SPD if and only if the system of
linear equations �(S

�
) ) �

�
"�(S

�
) admits at every instant a solution �

�
such that

E�exp� ��
�
�� ) �� d�/2��(R,

<�exp�!��
�
�� d=�!��

�
�� )�� d�/2��(R.

In the presence of an SPD, markets are complete if and only if rank �(S
�
)"n

�
almost everywhere.

follows Ito( di!usions driven by n
�
independent Brownian motions=:

dS
�
"�(S

�
) dt#�(S

�
) d=

�
(2.2)

with n
�
*n

�
.� Consider the conditional density that is generated by the dynam-

ics

dSH
�

"(r
���!�

���)SH
�
dt#�(SH

�
) d=H

�
(2.3)

where=H is a Brownian motion. The transformation from= to=H and S to
SH is an application of Girsanov's Theorem [see Harrison and Kreps (1979)].
Let gH

�
(S

�
, S

�
, �, r

��� ,���� ) denote this conditional density.
Under the assumptions made, the two characterizations of the SPD are

identical, i.e., fH"gH. For example, in the Black}Scholes case where
n
�
"n

�
"1 (r

���!�
��� ) is constant and �(SH

�
)"� ) SH

�
for a constant value of the

parameter �, the risk-neutral density is given by

fH
����

(S
�
, S

�
, �, r

��� , ����)"gH
����

(S
�
, S

�
, �, r

��� , ����)

"

1

S
�
�2����

exp�!
[ln(��

��
)!(r

���!�
���!��

�
)�]�

2��� �.
(2.4)

If we denote by H the price of a European call option with maturity date ¹

and strike price X, i.e., (2.1) evaluated for the payo! function
�(S

�
)"max[S

�
!X, 0], then Eq. (2.1) reduces to the well-known

Black}Scholes formula:

H
��
(F

��� ,X, �, r
��� ;�)"e
���� ��F

����(d
�
)!X�(d

�
)	 (2.5)

where F
���"S

�
exp((r

���!�
���)�) is the forward price for delivery of the underly-

ing asset at date ¹ and

d
�
,

ln(F
���/X)#(��/2)�

���
, d

�
,d

�
!���. (2.6)
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As we discussed in the Introduction, fH can only be compared to the condi-
tional distribution gH of S

�
given S

�
implied by the dynamics (2.3), not to the

conditional distribution g implied by (2.2). This paper examines how well the
equality fH"gH holds in the data, without making the Black}Scholes (1973)
assumptions } or for that matter any alternative parametric restrictions } and
studies the deviations from equality that arise in the data, and their conse-
quences. In Section 2.2, we will estimate the function fH from the cross-section of
option prices. This step essentially consists in collecting the market prices H
of call options, and given that we know their payo! functions �, inverting or
&de-convoluting' equation (2.1) to obtain fH.

In Section 2.3, we will then estimate the time-series SPD gH. Of course, the
risk-neutral path of the index �SH

�
	 is not observable. Our estimation method is

based on the fact, which follows from Girsanov's Theorem, that the instan-
taneous volatility functions �( ) ) are identical under both the actual and risk-
neutral dynamics. That is, the same function �( ) ) modi"es the Brownian shocks
in both (2.2) and (2.3). Therefore, we can use the observable index values �S

�
	 to

devise an estimator of �( ) ), and then use this estimate, in conjunction with the
characterization of the drift �H(SH

�
)"(r

���!�
��� )SH

�
. The risk-neutral drift rate

(r
���!�

��� ) is readily observable from the spot-forward parity relationship

r
���!�

���"
ln(F

���/S�
)

�
(2.7)

where both F
��� and S

�
are date-t market prices.

Throughout, we never need to observe the process �SH
�
	, yet we are estimating

its conditional density gH, not the actual density g of the process �S
�
	. We can

then proceed in Section 2.4 to examine whether our nonparametric estimators of
fH and gH are identical.

2.2. Cross-sectional inference: SPD inferred from option data

In order to estimate fH from option prices, we use the nonparametric method
of AmK t-Sahalia and Lo (1998). This method exploits an insight of Banz andMiller
(1978) and Breeden and Litzenberger (1978). Building on Ross's (1976) funda-
mental realization that options can be combined to create pure Arrow}Debreu
state-contingent claims, Banz and Miller (1978) and Breeden and Litzenberger
(1978) provide a strategy for obtaining an explicit expression for fH as a function
of H: fH is the future value of the second derivative of the call option pricing
formula H with respect to the option's strike price X. This can be seen either by
a direct calculation of the integral in (2.1), or more intuitively by forming
a butter#y portfolio with three call options, and letting the interval between the
strike prices of these call options shrink to zero.

Based on this characterization, AmK t-Sahalia and Lo (1998) take the option-
pricing formulaH to be an arbitrary nonlinear function of a pre-speci"ed vector
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�
Locally polynomial estimators (especially linear, p"1) are a better choice in general than the
Nadaraya}Watson estimator (p"0), especially for small sample sizes. In our empirical application,
the sample sizes are large enough to alleviate the need to consider locally polynomial estimators. See
also AmK t-Sahalia and Duarte (1999) for a local polynomial-based estimator that incorporates shape
restrictions (such as the monotonicity and convexity of the price function).

of option characteristics or &explanatory' variables, Z,[F
��� ,X, �, r

���]
, and use
kernel regression to construct a nonparametric estimate of the function H. The
estimatorHK can then be di!erentiated twice to produce an estimator of the SPD,
according to fH

�
( ) )"exp(r

����)��H( ) )/�X�. In practice, the dimension of the
kernel regression can be reduced by using a semiparametric approach. The
d-dimensional vector of explanatory variables Z is partitioned into [ZI 
,F

��� , r���]

where ZI ,[X/F

��� , �]
 contains dI "2 regressors. Suppose that the call pricing
function is given by the parametric Black}Scholes formula (2.5) except that the
implied volatility parameter for that option is a nonparametric function �(ZI ):

H(S
�
,X, �, r

��� , ����)"H
��
(F

��� ,X, �, r
��� ; �(X/F

��� , �)). (2.8)

To estimate �(X/F
��� , �), the Nadaraya}Watson kernel estimator�
 is given by

�( (X/F
��� , �)"

��
���

k
��	�

X/F
���!X

�
/F

�� ���
h
��	

�k��
�!�

�
h� ���

��
���

k
��	

(��	���
�� �	�����

��	

)k� (�
��

�

)
(2.9)

where �
�
is the volatility implied by the option price H

�
, and the univariate

kernel functions k
��	

and k� and the bandwidth parameters h
��	

and h� are
chosen to optimize the asymptotic properties of the SPD estimator:

fK H
�
(S

�
, S

�
, �, r

��� , ���� )"e���� ��
��HK (S

�
,X, �, r

��� , ����)
�X� �

�����

(2.10)

where HK (S
�
,X,�, r

��� ,���� )"H
��
(F

��� ,X,�, r
��� ,���� ; �( (X/F

��� ,�)).

2.3. Time-series inference: SPD inferred from returns data

Our time-series estimator of the SPD gH is based on inferring the conditional
density resulting from the risk-neutral evolution (2.3) of the asset price. The
essential di$culty is that we do observe the actual index values �S

�
	, rather than

the risk-neutral values �SH
�
	. As we discussed above, we rely crucially on the

commonality of the di!usion function under both the actual and risk neutral
dynamics of the asset price. We start in Section 2.3.1 by estimating the di!usion
function ��( ) ) of the asset price dynamics using the actual price series �S

�
	, and

then proceed in Section 2.3.2 to use this estimate, in conjunction with the known
and observable drift of the risk-neutral dynamics, to estimate the time-series
SPD gH.
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2.3.1. Estimation of the asset's diwusion function
To introduce as few unnecessary restrictions as possible on the behavior of the

process �S
�
	, we select an estimator of the di!usion function ��( ) ) that does not

place restrictions on the drift function. We use Florens}Zmirou's (1993) non-
parametric version of the minimum contrast estimators (hereafter FZ). FZ
provides an unbiased nonparametric estimator for the di!usion coe$cient in the
above model. The frequency of the data is assumed to be high enough that the
drift � can be unknown and treated as a nuisance parameter. The estimated
di!usion at a point is the squared change of observations weighted by the
contribution to the local time of these observations. Without loss of generality,
set t"0 and ¹"1, and assume that the process is sampled at the discrete dates
t
�
"i/N. The FZ estimator is based on a discrete approximation of the local

time in S of the di!usion function during [0, t],

¸
�
(S)"lim

��


1

2��
�




1
���
��
� du. (2.11)

¸
�
(S) is estimated consistently by

¸
�
(S)"

1

nh
��

����
�
���

K�
S
�
!S

h
��
� (2.12)

where [ ) ] denotes the integer part,K is a kernel function and h
��

is a bandwidth
parameter such that (Nh

��
)
� ln(N)P0 and Nh�

��
P0 as the number of obser-

vations N tends to in"nity. When the trajectory of the di!usion visits the asset
price level S, the natural local estimator of the di!usion function at that level is

�( �
��
(S)"

��
�
���

K(��
�

��

)N�S
�������

!S
���

	�
��

���
K(��
�


��
)

(2.13)

which consistently estimates ��(S) as NPR, provided that Nh�
��

P0. More-
over, if Nh�

��
P0,

N���h���
�� �

�( �
��
(S)

��(S)
!1� �

P ¸(S)
��� ) Z (2.14)

where Z is a standard Normal variable independent of ¸(S).
In order to assess the empirical performance of the estimator, we perform

Monte-Carlo simulations in conditions that approximate the real data. We
simulate sample paths of the asset price process �S

�
	 according to (2.2) with

a constant drift rate, �(S)"� ) S, and a di!usion function given by

�(S)"
#�(S!S


)#�(S!S



)�.
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��The Milstein scheme is a strong Taylor discrete approximation of the continuous-time sample
path which converges strongly with an order 1.0. The traditionally-used Euler scheme converges
substantially more slowly: its order of convergence is 0.5.

S


is set to 400. The parameter 
 represents the level of volatility, � the slope of

the volatility function and � its curvature at S


. We consider various combina-

tions of 
, � and � and obtain a range of shapes for the di!usion function which
is capable of capturing the empirical features of the asset's dynamics.

To simulate the continuous-time sample paths, we generate three months of
data using the Milstein scheme [see e.g., Kloeden and Platen (1992, Section
10.3)] sampled every 5 minutes, assuming 8 hours of trading per day and 21
trading days per month.�� We check whether the estimators do capture the
shape of the di!usion by considering a #at, downward sloping and upward
sloping �( ) ) in our path simulations. Details on the simulations can be found in
Appendix C [see Table 8 and Fig. 11]. The results show that �(

��
( ) ) captures

very well the average level, slope and curvature of �( ) ). Since the estimator has
a local character, the di!usion function is estimated more precisely around the
initial level S



where most of the observations are recorded. The results of our

simulations also show that the estimator widely outperforms the standard
maximum-likelihood estimator, which assumes that the volatility parameter is
constant.

2.3.2. Estimation of the returns SPD
Once the volatility function �( ) ) of the index dynamics �S

�
	 is estimated, we

can make use of Girsanov's characterization of the change of measure from the
actual to the risk-neutral dynamics: the drift is set at the di!erence between the
riskless rate and the dividend yield of the index, but the di!usion function
is unchanged. We can then recover the time-series SPD gH using one of
two natural methods. We can either solve, for all possible values of S

�
, the

Fokker}Planck partial di!erential equation

�gH

��
#(r

���!�
���)

�gH

�S
�

#

1

2
�( �(S

�
)
��gH

�S
�

"0 (2.15)

with the initial condition that gH(S,S, 0, r, �) is a Dirac mass at S, or compute
gH by Monte-Carlo integration.

In our empirical implementation below, we adopt the second method. Given
the starting value of the index at the beginning of the period, we simulate
M"10,000 sample paths of the estimated risk-neutral dynamics (2.3), where we
have replaced the di!usion function by its nonparametric estimate:

dSH
�
"(r

���!�
��� )SH

�
dt#�(

��
(SH

�
) d=H

�
(2.16)
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and use the Milstein scheme. The end points at ¹ of these simulated paths are
collected as �S

���
: m"1,2,M	, and annualized three-month index log-returns

are calculated.We obtain the SPD gH of the future index values S
�
by construct-

ing a nonparametric kernel density estimator p( H
�
for the index continuously-

compounded log-returns u:

p( H
�
(u)"

1

Mh
��

�
�

���

k
���

u
�

!u

h
��

� (2.17)

where u
�
is the log-return recorded at the end of the mth sample path. From the

density of the continuously compounded log-returns we then have

Pr(S
�

)S)"Pr(S
�
e�)S)"Pr(u)log(S/S

�
))"�

�������� �


�

pH
�
(u) du (2.18)

and can recover the price density gH corresponding to the return density pH as

gH
�
(S)"

�
�S

Pr(S
�

)S)"
pH
�
(ln(S/S

�
))

S
. (2.19)

As we show in Appendix A, both methods result in a nonparametric estimator

g( H which is �N-consistent for gH, even though the estimator �(
��
( ) ) converges at

a speed that is slower than �N.

2.4. Testing the no-arbitrage restriction

We have now obtained consistent estimators of both the cross-sectional and
time-series SPDs. In this section, we construct a test of the null hypothesis that
} as speci"ed by the no-arbitrage theory } they are identical, i.e., fH"gH.
Formally, the null and alternative hypotheses that we consider are

H


:Pr( fH

�
(S

�
)"gH

�
(S

�
))"1 vs. H

�
:Pr( fH

�
(S

�
)"gH

�
(S

�
))(1.

(2.20)

A natural test statistic is the distance between the cross-sectional and time-series
SPDs:

D( fH, gH),E[( fH
�
(S

�
)!gH

�
(S

�
))��(ZI )] (2.21)

where �(ZI ) is a weighting function. Intuitively, the distance measure D will be
large when fH is far from gH, leading to a rejection of H



, and small when the two

are su$ciently close together, and the null hypothesis cannot be rejected. The
actual test statistic is D evaluated at the two nonparametric estimates fK H and g( H.

78 Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110



How &far' is far enough to reject H


? We derive the asymptotic distribution of

this test statistic in Appendix B. The use of the ¸
�
distance metric is a matter of

convenience, which makes the derivation of the limiting distribution of the
statistic feasible.

In practice, any numerical evaluation of the integral on the right-hand side of
(2.21) can be used. We evaluate numerically the integral on a rectangle of values
of the vector ZI representing a subset of the support of its density � } so �(ZI ) is
a trimming index } and use the binning method to evaluate the kernels [see, e.g.,
Wand and Jones (1995) for a description of the binning method].

3. An empirical comparison of S&P 500 implied SPDs

3.1. Estimating the S&P 500 implied SPDs

We collected the entire sample of daily prices of S&P 500 call and put options
between April 25, 1986, when the options "rst became European, and December
31, 1994. These options are traded on the Chicago Board Options Exchange
(symbol SPX) calls and puts. For the underlying index, we obtained the time
series of S&P 500 Index values from the Chicago Mercantile Exchange (CME)
between January 2, 1986 and February 28, 1995. The CME provides a time-
stamped high-frequency tick series of S&P 500 index values. The index value is
recorded every few seconds.

We focus our empirical analysis on the three-month horizon. Since the goal of
this paper is to assess if option markets correctly price the probabilities of
movement of the S&P 500 index, we design our estimation procedure for the
SPDs to avoid any look-ahead bias while including ample observations for our
estimation. We use two weeks of option prices that matures at the same date
¹ to estimate fH. This is a reasonable compromise between having a snapshot of
the cross-sectional SPD at one point in time and having enough observations
for our estimation procedure to be su$ciently precise. We make sure that the
estimation period for the time-series SPD (gH) does not overlap with that for the
cross-sectional SPD ( fH). To estimate gH, we use ten weeks of index prices
starting immediately after the last used option price and up to the maturity date
¹. Fig. 1 describes the two estimation subperiods that we use to estimate fH and
gH, respectively.

The options dataset presents four challenges. First, it contains some implaus-
ible entries; second, dividends are not observable; third, S&P 500 futures are
traded on the ChicagoMercantile Exchange, and cannot easily be time-stamped
synchronously with the options; and fourth, in-the-money options are much less
liquid than at and out-of-the-money options, whether calls or puts. We "rst
drop options with implied volatility greater than 70%, or price less than 1/8. As
in AmK t-Sahalia and Lo (1998), we solve the second problem by relying on the
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Fig. 1. Estimation periods for SPD comparison.

spot-forward parity relationship (2.7). To solve the third problem, we use prices
at-the-money (where both the put and call are liquid) to infer the value of the
implied futures according to put}call parity:

F
���"X#e���� ��H(S

�
,X, �, r

��� , ���� )!G(S
�
,X, �, r

��� , ����)	 (3.1)

where G denotes the put price. Note that this equation does not require that the
spot price of the index be recorded. Given the futures price F

��� , we can replace
the prices of all illiquid options, i.e., in-the-money options, with the price implied
by put}call parity applied at each value of the strike price, using the price of the
liquid out-of-money option. This solves the fourth problem. After this proced-
ure, all the information contained in liquid put prices has been extracted and
resides in corresponding call prices and we can now concentrate exclusively on
call options.

The processed data contains 55 three-month periods starting from June 1986
and ending in December 1994. Until March 1992, the available maturities
traded on the CBOE are at quarterly, instead of monthly, frequencies. We apply
the estimation method described in Section 2.2 to these 55 periods to obtain
the cross-sectional SPD estimator. For each of the 55 periods, we estimate the
time-series SPD gH as described in Section 2.3. We "rst estimate both
the di!usion function ��( ) ) and its asymptotic variance using the FZ estimator
(2.13). Then we simulate the risk-neutral sample paths to date ¹ and non-
parametrically estimate gH.

The asymptotic properties of the FZ estimator are derived as the time
increment between observations goes to zero. Therefore, in our estimation
procedure, we use the high-frequency S&P 500 index data described above.
However, to limit the occurrence of market micro-structure e!ects, we sample
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from this time series, each day, the index values every 5 minutes, starting with
the "rst trade of the day. As the Monte Carlo results in Appendix C show, the
frequency of the derived series is high enough for our estimator the di!usion
function ��( ) ) to be very accurate. The Monte-Carlo simulations also provide
guidance in selecting the bandwidth in our estimation of the di!usion function.
In the simulation for each period, we use the same interest rate and dividend
yield as those used in estimating fH. The process is initialized at index value at
the beginning of the period and we use a frequency of eight trades per day.
Finally, the estimated di!usion function is linearly extrapolated at both ends of
the spectrum to accommodate potential outliers.

Fig. 2 reports the average shape of the estimated function uC �( (S), where
u,ln(S

�
/S

�
) is the log-return corresponding to the possible values of S

�
"S,

for the three subperiods: (a) 1986:07}1987:09 (pre-crash, 5 periods); (b)
1987:10}1990:08 (12 periods); (c) 1990:09}1994:06 (post-crash, 38 periods). The
average estimated di!usion function is obtained by averaging point by point
each period's estimated di!usion functions. The average estimated variance is
obtained in the same way. A 95% con"dence interval is constructed by adding
to or subtracting from the average di!usion function two times the average
estimated standard deviation point by point. As is the case with local non-
parametric estimation methods, the con"dence interval widens rapidly as
we move away from the range of observed values of the regressor. The fact in
Fig. 2 that volatility becomes higher when the S&P 500 index goes down in
value is compatible with Black's leverage e!ect explanation. Note that the
overall level of volatility is substantially lower during the post-1990:09 period,
the last substantial market downturn in our sample. Overall, these curves
exhibit a signi"cant amount of nonlinearity, which suggests that the estimated
time-series SPD gH will be di!erent from the benchmark log-normal case given
in (2.4), and that the choice of an estimator robust to departures from the
standard assumptions is empirically warranted.

In the absence of arbitrage, the futures price is the expected future value of the
spot price under the risk-neutral measure. Since the riskfree rate and the
dividend yield are not directly observed, we make the conservative assumption
that any mismatch between the means of the two SPDs is due to measurement
error. We therefore translate both distributions so that their means match the
implied futures price by construction.We then choose the bandwidth used in the
kernel estimation of gH to best match the variance of the two SPDs. In order to
avoid over- or under-smoothing of gH, we constrain the bandwidth to be within
reasonable values of 0.5 to 5 times the asymptotic optimum derived in Appendix
A, and we stop the bandwidth search whenever the variance of gH is within 5%
of the variance of fH. This procedure allows us to focus our comparison on the
conditional skewness and kurtosis of the two SPDs.

In Fig. 3, we plot for the same three subperiods (a)}(c) the average densities
fH and gH over the subperiod. In (b), we see that the time-series SPD is actually
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Fig. 2. Average estimated � function.
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Fig. 3. Average state price densities.
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Table 1
Bandwidth values for the SPD estimators�

Estimator Kernel Sample size q p m d h

X/F in fKH k
���

n"2,520 2 5 2 2 h
��	

� in fKH k
���

n"2,520 2 5 0 2 h�
�(
��

in g( H k
���

N"63 2 3 0 1 h
��

g( H k
���

M"10,000 2 3 0 1 h
��

�Bandwidth selection for the SPD estimators, according to the selection rules given in Appendix A.
All values in the table are averaged over the 52 three-month subperiods betweenApril 1986 and June
1996.

more negatively skewed than the cross-sectional SPD, due to the October 1987
market crash. The fact that from that point on fH will become more skewed (and
more leptokurtic) than gH is obviously consistent with the emergence of the
implied volatility smile after the market crash. More importantly, however, the
di!erences in skewness and kurtosis show that the options market has adjusted
to pricing options according to a cross-sectional SPD that re#ects negative
skewness and excess kurtosis, but to a level that over-ampli"es their presence in
the time-series SPD. We now examine this last point in greater detail.

3.2. Comparing the cross-sectional and time-series SPDs

If investors had perfect foresight and knew the process governing the underly-
ing asset price dynamics, then by no arbitrage, fH and gH should be equal. If this
assumption is too unrealistic } after all, the econometrician does not know
gH before the end of the estimation period, recall Fig. 1 } then we cannot expect
all di!erences between the two SPDs in any given period to be traded away by
arbitrageurs. However, we can still expect rational nonsatiated investors to take
advantage of any systematic di!erences between the two SPDs that keep arising
over time. In much the same way, the CAPM is derived under the assumption
that investors know the variance covariance matrix of the asset returns; hence
in practice market e$ciency conclusions can only be drawn from repeated
deviations from the expected return relation. Therefore our comparisons of
the two SPDs will focus only on the systematic di!erences between the two
implied SPDs.

We document these di!erences in four di!erent ways. First, we focus on the
"rst four conditional moments of the two SPDs. We start by regressing the
conditional moments implied by fH on the corresponding moments implied by
gH for the same period. If the moments estimated from option prices correctly
forecast the corresponding moments of the S&P 500 index through their
respective SPDs, the intercept in the regression should be 0 and the slope should
be 1. Results in Table 2 indicate that the cross-sectional SPD fH systematically

84 Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110



Table 2
Predictability of cross-sectional SPD moments using the time-series SPD moments�

Moment Intercept (t-statistic) Slope (t-statistic) R�

Mean !0.0006 1.002 0.98
(!0.29) (7.82)

Volatility 0.0075 1.009 0.92
(0.076) (3.39)

Skewness !0.51 !0.27 0.01
(!0.91) (!0.11)

Kurtosis 0.87 !0.83 0.06
(0.45) (!0.24)

�OLS regression of the moments of the cross-sectional SPD on the corresponding moments of the
time-series SPD. t-statistics are in parentheses. If the time-series SPD moment constitutes the true
expected value of the cross-sectional SPD moment, then the intercept should be zero and the slope
one. These values should hold no matter how large the relevant information set used to conduct the
forecasts is, since the forecast error must be orthogonal to the forecast itself. Using a larger
information set would simply result in a higher regression R�. The sample for each regression is the
52 three-month subperiods used throughout the analysis. Five outliers (for both the skewness and
kurtosis analysis) are excluded from the regressions: they correspond to the periods starting in
January 1987, October 1989, August 1992, September 1992, and December 1994. The results show
very clearly that the cross-sectional and time-series SPDs agree on the "rst two moments, but that
the option-implied SPD does not reproduce the higher-order moments of the index-implied SPD.
The regression is represented by the solid line on Figs. 4 and 5 with the intercept constrained to be
zero, for comparison with the 453 line (dashed line). As the graph shows, the cross-sectional SPD
tends to be more negatively skewed than the time-series SPD, and more leptokurtic. These results
can be compared to the case where we allow for a peso-problem e!ect (see Fig. 6) where the "t
between cross-sectional and time-series SPDs is vastly improved. Finally, these deviations are not
entirely due to estimation error: they are signi"cant on the basis of Monte-Carlo simulations (see
Appendix D).

displays more skewness and kurtosis than does the time-series SPD gH. Fig.
4 shows that the two SPDs do not exhibit signi"cant di!erences in their
conditional means and variances respectively given our bandwidth-selection
procedure. However, in Fig. 5 the comparison of the regression (without con-
stant) line with the 453 line (dashed line) underlines the excess skewness and
kurtosis present in the options data relative to the time-series index observa-
tions. In light of the remarks above, we are interested in documenting in these
"gures the extent to which the data points are unevenly distributed around the
453 line, not in their particular distance to that line: how far each point is from
the line only indicates the degree to which investors could forecast the particular
gH for that period, and any unexpected shock occurring in that period could
have caused the mismatch of the two SPDs. However, any uneven distribution
of the scatterplot signals that the conditional moments from fH either systemati-
cally underestimate or systematically overestimate their counterparts from gH.
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Fig. 4. Moment comparison.
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Fig. 5. Moment comparison.
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Table 3
Nonparametric test of SPD equality�

Integral (Average) Test statistic (Average) p-value (Average)

0.937 !0.539 0.704

�Nonparametric tests of the null hypothesis of equality of the cross-sectional and time-series SPDs.
The test is repeated for each of the 52 subperiods. The bandwidth selection rules are given in
Appendix B where �

��	
and �

��	
are de"ned. The kernel function is k

���
. The weighting function � is

a trimming index, i.e., only observations with estimated density above a certain level, and away from
the boundaries of the integration space, are retained. &Average integral' refers to the percentage of the
estimated density mass on the integration space (averaged over the 52 subperiods) that is kept by the
trimming index, i.e., ��(ZI )�(ZI ) dZI , where � is the marginal density of the nonparametric regressor
ZI "[X/F

���]
. &Average test statistic' refers to the standardized distance measure between the two
SPD estimates (remove the bias term, divide by the standard deviation), again averaged over the 52
subperiods. The average p-value is similarly calculated by averaging the p-values obtained for each
subperiod. The integral de"ning D is calculated over the interval [0.85, 1.10] in the moneyness
space.

We include in Appendix D Monte-Carlo simulations of these conditional
moment regressions in a setup that reproduces the main features of the real data,
including sample size, number of subperiods and general level of noise. The
results of these simulations [see Table 9] show that the deviations between the
cross-sectional and time-series conditional skewnesses and kurtoses reported in
Table 2 are signi"cant not just asymptotically but also in small samples.

As a second measure of the di!erences between the two SPDs, we provide
a formal statistical test of the null hypothesis that the two conditional densities
are identical. The test introduced in Section 2.4 focuses on whether the option-
implied risk-neutral distribution of future returns, as assessed by the market, is
equal to the true time-series distribution, also risk-neutral, conditional on all the
information available. In other words, we test whether the market e$ciently
prices options according to Fama (1976)'s de"nition. We describe the test in
Appendix B and report the results in Table 3. Because of its nonparametric
nature, this test is consistent against all possible departures from the null
hypothesis, but su!ers from low power against any speci"c departure } in this
case, the failure to match the third and fourth conditional moments of the
densities. The average p-value for the test is 0.7, indicating that on average the
test fails to reject the null hypothesis that the two SPDs are identical against an
unspeci"ed nonparametric alternative. This is largely due to the small number of
observations included in each two-week period [recall Fig. 1], which limits the
ability of a global nonparametric test to distinguish the two densities. Later, in
Section 3.6, we propose yet another measure of the di!erences between the two
SPDs based this time on comparing the out-of-the-money put prices implied by
the two densities.
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3.3. The trading proxtability of SPD diwerences

Our third measure of the di!erences between the two SPDs consists in
recording the trading pro"ts that would have resulted from exploiting optimally
their discrepancies. So far, we have identi"ed statistically signi"cant di!erences
between the cross-sectional SPD fH and the time-series SPD gH when comparing
their conditional moments. We now propose to measure the di!erences between
the two SPDs using as a metric the pro"tability of trading from their di!erences.
In Section 3.2, we were chie#y interested in whether the option market correctly
assesses at date t the time-series SPD that will prevail over the life of the option,
i.e., in the period immediately following the option price observation: recall
Fig. 1. By contrast, trading decisions must obviously be made based on date t,
not future, information and hence we must estimate both fH and gH with past
data. We describe in Fig. 8 the estimation subperiods used at each point in time
for forming our trading portfolio. The cross-sectional SPD fH is estimated using
option data within a window of two weeks following the latest expiration date,
whereas the time-series SPD gH is estimated for a three-month period before
that date. Option quotes on the business day immediately following the cross-
sectional SPD estimation subperiod are used as the input of our trading
strategy. We only take positions in out-of-the-money (OTM) and at-the-money
(ATM) puts and calls, since these are more competitively priced due to their
liquidity. Thus our trading pro"ts are conservative in the sense that we have
restricted the investment opportunity set.

In Fig. 9, we indicate how to design such a trading strategy. Intuitively, we are
buying the range of strike prices which are underpriced in the sense of fH(gH

(prices, which are determined by fH, are cheaper than justi"ed by the time series
gH) and selling options with payo!s in the ranges that are overpriced: fH'gH

(prices more expensive than justi"ed by the time series). Speci"cally, we take
long and short positions in options according to the rules described in Table 4.

In constructing our trading portfolio at time t, we value-weight each option in
the portfolio by their cash out#ow. The cash out#ow of a long position is the
cost of the option itself; that of a short position is its margin deposit. We can
then measure the performance of our trading portfolio by its return. We de"ne
the rate of return of the trading portfolio as

return"(total in#ow at expiration)/(total out#ow at initiation)!1. (3.2)

For simplicity, we assume that the margin deposit does not earn interest and
short sale proceeds cannot be used to "nance purchases. Based on our prior that
the index option SPD is overly skewed and leptokurtic, we call &skewness trades'
trades that are triggered by the rule (S1) only and &kurtosis trades' trades
triggered by rule (K1) only.

We report the results of these trading strategies in Table 5. It is clear from the
table that both trading strategies would have provided superior Sharpe ratios
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Fig. 6. Moment comparison with jumps.
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Fig. 7. Average relative price di!erence for out-of-the-money put.
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Table 4
Trading rules to exploit SPD di!erences�

Skewness (S1) skew( fH)'skew(gH) Sell OTM put,
Buy OTM call

Trade (S2) skew( fH)(skew(gH) Buy OTM put,
Sell OTM call

Kurtosis (K1) kurt( fH)'kurt(gH) Sell far OTM and ATM,
Buy near OTM options

Trade (K2) kurt( fH)(kurt(gH) Buy far OTM and ATM,
Sell near OTM options

�This table describes the trading rules designed to exploit the di!erences between the cross-
sectional and time-series SPDs. A far OTM call (put) is de"ned as one whose strike price is 10%
higher (lower) than the futures price. A near OTM call (put) is de"ned as one whose strike price is 5%
higher (lower) but 10% lower (higher) than the futures price. The CBOE imposes speci"c margin
requirements on the S&P 500 index options. Uncovered writers must deposit 100% of the option
proceeds plus 15% of the aggregate contract value (current index level multiplied by $100) minus the
amount by which the option is out-of-the money, if any. The minimummargin is 100% of the option
proceeds plus 10% of the aggregate contract value. Long puts or calls must be paid in full.

Table 5
The pro"tability of trading SPD di!erences�

(S1) Skewness Trade

S&P 500
Period Return Volatility Range Sharpe ratio Sharpe ratio

86:04}87:09 7.49 0.94 [7, 8] 1.8395 !0.0895
87:10}89:12 16.30 15.38 [!7, 47] 0.5680 0.3478
90:01}96:06 6.18 13.16 [!38, 21] 0.1346 0.1487
Overall 8.79 13.79 [!38, 47] 0.2545 0.1106

(K1) Kurtosis Trade

S&P 500
Period Return Volatility Range Sharpe ratio Sharpe ratio

86:04}87:09 !23.84 99.05 [!138, 41] !0.2985 !0.0895
87:10}89:12 17.58 21.38 [!18, 36] 0.4755 0.3478
90:01}96:06 21.50 24.94 [!44, 51] 0.6867 0.1487
Overall 16.51 36.39 [!138, 51] 0.3145 0.1106

�This table reports the pro"t recorded from trading according to one of the two strategies (S1) or
(K1) is measured as an annualized rate of return. The trading strategies are described in Fig. 7. The
returns and their volatilities are all annualized. All numbers except Sharpe ratios are percentages.

(compared to buying and holding the S&P 500 index) over the 1986}1996
period, as well as over the same three subperiods that we considered above.
Given that the trading signal is based on the current option and the lagged index
observations, the persistent trading pro"tability suggests that the relative shapes
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of the SPDs evolve very slowly over time. The option SPD is overly skewed and
leptokurtic in general, not period speci"c.

We will provide below a peso-problem interpretation for the superior pro"ts
of the trading strategy. Indeed, by introducing a simple jump component to the
index dynamics to re#ect the nature of the peso problem, we are able to partially
reconcile some of the di!erences in the time-series and cross-section SPDs. Both
the &skewness trades' and the &kurtosis trades' sell OTM puts, which could
conceivably incorporate a risk premium for the (downward) jump risk in the
index. By selling these options in a time period where ex post no jumps actually
occurred (but could have occurred ex ante), we are capturing this risk premium
in the form of superior returns.

3.4. Implications for the aggregate pricing kernel

Our option trading simulations based on the estimated SPD di!erences
achieves superior Sharpe ratios compared to buying and holding the S&P 500
index over our sample period: see Table 5. We now explore a di!erent metric by
which to assess the di!erences between the cross-sectional and time-series
implied state-price densities, or equivalently pricing kernels or stochastic dis-
count factors. In this section, we look at the volatility of the stochastic discount
factor M that is consistent with our data. Hansen and Jagannathan (1991) show
that the "rst-order condition E(MR	)"0 for the asset's excess return R	 implies
the bound �(M)*E(M)E(R	)/�(R	) where the expectation and the standard
deviation are conditional on the information available at time t. The question
we are now asking is how much tighter the bound is in the presence of options.

For a vector m of returns, the Hansen}Jagannathan bound without the
positivity restriction, M*0, becomes,

��(M)*(1!E(M)E(1#R))
�
�(1!E(M)E(1#R)) (3.3)

where � is the variance}covariance matrix of the returns vector.
We present the volatility bound of the stochastic discount factor in Fig. 10 in

the same format as Fig. 1 in Hansen and Jagannathan (1991, p. 228). The "gure
shows the feasible region for the stochastic discount factor using the S&P 500
index and T-bill (the solid line), and that using S&P 500 index, T-bill, and the
option portfolios (the dashed line). The option portfolios are from our skewness
and kurtosis trades reported in Table 5. For simplicity, the "gure does not
impose the nonnegativity restriction of the pricing kernel. Since we use our
sample moments in our calculations, the short sample period and small number
of assets inevitably introduces measurement error. However, our goal is to
illustrate the more stringent restriction on the volatility bound when the option
portfolio returns are included in our calculation.

In addition, we compare our volatility bounds obtained above to the volatil-
ity of the stochastic discount factor under the consumption-CAPM. Here, we
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Fig. 8. Estimation periods for trading SPD di!erences.

take the representative agent's preferences to be given by a time-separable power
utility function, ;(C)"(C�
�!1)/(1!�), where � is the coe$cient of relative
risk aversion, andC represents aggregate consumption. In this case, the stochas-
tic discount factor is given at date t#1 by M

���
"�(C

���
/C

�
)
�, where � is the

subjective or time discount factor and C
�
is the level of aggregate consumption

at date t. We assume that consumption growth is an i.i.d. lognormal process. We
calculate the volatility values of M corresponding to various values of the risk
aversion parameter �. The volatility of M generated by the consumption data is
also plotted in Fig. 10. The "rst point above the horizontal axis has relative risk
aversion of one; successive points have risk aversion of two, three, and so on; all
values are obtained with �"1.0. Not surprisingly, the bound for M is more
restrictive in the presence of the option portfolios, although the restriction on
the risk aversion parameters is essentially comparable to the benchmark case
without options: the power utility pricing kernels do not enter the feasible region
until the coe$cient of relative risk aversion reaches the value 27, vs. 26 without
options.

3.5. Reconciling the implied SPDs: A peso-problem interpretation

A natural interpretation for the di!erences in skewness and kurtosis between
fH and gH lies in the possible existence of a peso problem for the S&P 500 index:
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the option market could price the S&P 500 options as if the S&P 500 index were
susceptible to large (downward) jumps of the type experienced in October 1987,
even though jumps of that magnitude are absent from the time series data in the
subsequent period. A number of studies have documented the presence of jumps
in "nancial time series, and modeled their e!ect on option prices [see Bates
(1991, 1996) and Bakshi et al. (1997)]. These studies have estimated the struc-
tural parameters of the postulated SPD from the option data. They compare the
option-implied parameters to parameters estimated from the actual series of the
underlying asset value } not its risk-neutralized series } which is possible
through assumptions on preferences (typically log-utility or power utility). Our
focus here is on the no-arbitrage restriction fH"gH, with the explicit objective of
avoiding assumptions on preferences.

In a context where realized jumps are infrequent, our estimates of the
time-series SPD would not be able to show any evidence of jumps; however, the
estimated cross-sectional SPD would re#ect the existence of a jump risk as long
as that risk is priced [Merton (1976) derives a closed-form option-pricing
formula if this risk is unpriced]. To examine how the presence of jumps would
a!ect our empirical comparison of the two SPDs, we allow the risk-neutral
dynamics of the index to contain a jump term in addition to its di!usion
component:

dSH
�
"(r

���!�
���!qH�H)SH

�
dt#�(SH

�
) d=H

�
#JH

�
SH
�
dNH

�
(3.4)

where we specify that NH
�

is a Poisson process with constant intensity
qH (Pr(dNH

�
"1)"qHdt), independent of =H

�
, and for simplicity we make the

percentage jump size JH
�
nonrandom. The corresponding actual dynamics are

dS
�
"�(S

�
) dt#�(S

�
) d=

�
#J

�
S
�
dN

�
(3.5)

where N
�
is a Poisson process with intensity q and the same jump times as NH

�
,

and the percentage jump size is J
�
"JH

�
"�H. The market price of jump risk is

qH/q.
When we simulate dynamics (3.4), with the estimated �(

��
( ) ), we will draw

observations from a process that incorporates the jump term. Over the multiple
sample paths simulated, we will certainly observe some jumps, even though
none were present in the single sample path of the actual data } this is
the essence of the peso problem. Therefore, we use the same estimator of �( ) )
as is the case where no jumps have been observed during the period of interest
(three months in our empirical implementation). However, our estimated
time-series SPD will re#ect the presence of the jumps because we are simulating
a large number of sample paths from a process where jumps are present,
even though none were present in a single realization } the observed sample
path.
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Table 6
Skewness and kurtosis SPD "t in the presence of jumps�

No jump Jump frequency

10 yr 5 yr 3 yr 2 yr 1 yr

Skewness "t 0.5933 0.5344 0.5019 0.4806 0.5085 0.6964
Kurtosis "t 1.6053 1.5187 1.4930 1.4947 1.5642 1.8014

�Root-mean-squared di!erences between the cross-sectional and time-series SPD moments, where
the time series dynamics incorporate a jump term as in (3.4). The jump frequency parameter for the
jump speci"cation is �H. The jump frequency is quoted in the table in terms of one jump per length of
time.

Note that the parameter qH/q, which enters the risk-neutral dynamics of the
S&P 500, is determined by investors' preferences. In other words, we can no
longer fully identify the risk-neutral dynamics from the time series of actual S&P
500 values. Instead, we will utilize the excess parameter qH to make the time-
series SPD gH as close as possible to the cross-sectional SPD fH which we
previously estimated. We still make no speci"c assumptions on preferences, as
we do not attempt to specify separately the actual jump intensity in (3.5). Speci"c
preferences would tell us how to go from (3.4) to (3.5), but that step is not
required here since in a peso-problem context the observed Poisson process
does not actually jump (i.e., the realized values in the sample are all dN

�
"0).

Speci"cally, when jumps are possible, the equality fH"gH is no longer an
over-identifying restriction since gH is no longer identi"able separately from the
actual observations on �S

�
	. Instead, this equality allows us to restore the exact

identixcation of the system when previously it was an over-identifying restric-
tion. As a result, there are no testable implications to be drawn, but we still fully
identify the system without assumptions on preferences. Of course, if we were
willing to set bounds on the risk premium associated with the jump risk } or
equivalently investors' risk aversion } then we could draw further conclusions
regarding the plausibility of the actual jump arrival intensity q corresponding
to the estimated qH. Alternatively, we could use the additional restrictions given
by the equality between the two SPDs for di!erent option maturities. This
would then restore the overidenti"cation of the system and generate testable
implications.

Empirically, using post-1962 daily returns, we estimate the standard deviation
of the S&P 500 index ex-dividend returns to be 0.855%. We classify negative
returns beyond "ve standard deviations to be downward jump events. There are
seven such events out of the 8685 daily observations (roughly corresponds to
once every 5 year) with an average jump size of !8%. As a realistic speci"ca-
tion, we therefore perform our simulations with a "xed downward jump size of
!10%, and moment-matching scheme for four jump frequency speci"cations,
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corresponding to one jump every ten years, "ve years, two years, and one
year, respectively. The root mean squared (RMS) di!erences in Table 6
between the cross-sectional and time-series (with jump) SPD moments exhibit a
U-shaped pattern: the once-every-ten-years speci"cation does not produce
enough skewness, whereas the once-every-two-years one results in a skewness
for the time-series SPD that overshoots that of the cross-sectional SPD. We
"nd that the minimum RMS is achieved for a frequency close to once every
three years. We therefore simulated (3.4) with this "fth jump frequency speci"ca-
tion, which indeed produces a time-series SPD that best matches the cross-
section SPD.

Fig. 6 is analogous to Fig. 5, but the time-series SPDs include the possibility
of jumps at the once-every-three-years frequency. Note that the scatter plot is
now more evenly distributed around the 453 axis, i.e., the conditional moments
of the cross-sectional SPD are matched more accurately when jumps are
included than they were in Fig. 5. It is apparent that the incorporation of a jump
term produces an improvement towards reconciling the cross-sectional and
time-series SPDs, but is not su$cient to explain the magnitude of the dispersion
of the excess skewness and excess kurtosis of fH relative to gH. In particular, the
inclusion of jumps reconciles the cross-sectional and time-series skewnesses
better than it does for the corresponding kurtoses, which is to be expected since
we have constrained the jumps to be exclusively of negative sign.

3.6. A comparison of out-of-the-money put prices

Our fourth and last measure of the di!erences between the two SPDs consists
in comparing the out-of-the-money put prices implied by the two distributions.
Rather than comparing conditional moments, we are now comparing integrals
of the option's payo! against the respective densities. For out of the money
options, we are essentially computing (weighted) tail probabilities. Indeed,
excess skewness and kurtosis implies that, other things being equal, out-of-the-
money put options are more expensive. We report in Fig. 7 the relative average
di!erence between the prices implied by both fH and gH. We obtain put prices
by integrating the left tail of the respective SPD against the respective put
payo!, and discounting at the riskfree rate. For a given moneyness level (de"ned
as the ratio of the option's strike price to the S&P 500 futures price), we average
the corresponding prices over the corresponding periods used in forming the
SPD estimates. We "nally compute the relative di!erence between the prices
implied by the fH and gH SPDs. As a result, excess skewness or kurtosis
embedded in option prices should translate in a relative price di!erence which
gets larger as their moneyness is lower. Fig. 7 shows that this is indeed the case
especially after the 1987 crash. Far out of the money puts valued using fH can be
as much as 70% more expensive than their counterparts valued using gH.
Further, Fig. 7 con"rms Fig. 6: it shows that the out-of-the-money put prices
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Fig. 9. (a) Skewness trade. (b) Kurtosis trade.

implied by the time-series SPD when jumps are included are closer to those
implied by the cross-sectional SPD than the corresponding curve without
jumps.
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Fig. 10. Hansen}Jagannathan bound.

4. Conclusions

We have provided a method to infer from the observed time series of under-
lying asset values the SPD that is directly comparable to the option-implied
SPD, and requires no assumptions on the representative preferences. We also
showed how separate exact identi"cation of the two SPDs from the observable
data can be achieved, leaving the theoretical restriction of equality between the
two SPDs as an overidentifying restriction. In that context, the equality between
the cross-sectional and time-series SPDs becomes an over-identifying restric-
tion, which is therefore testable. In addition to making no assumptions whatso-
ever on preferences, we also avoided parametric assumptions on the nature of
the di!usion driving the observable asset's price.

The extension of this method to the case of multiple traded state variables
poses no conceptual di$culties; in practice, our reliance on nonparametric
estimators would result, in higher dimensions, in a loss of accuracy, and hence
power to detect deviations from one SPD to the other. This &curse of dimen-
sionality' is a consequence of the local character of nonparametric estimators:
accurate estimates can only be obtained in regions of the state space that are
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visited often enough by the variables. For a given sample size, each region is
revisited much less often as the dimension gets higher. With this standard caveat
in mind,Monte-Carlo evidence shows that our method performs very well in the
context that was relevant for our empirical application.

In the case of the S&P 500 index, our comparison of the two SPDs reveals
that the market prices options with an overly skewed and leptokurtic SPD. Thus
we reject the joint hypothesis that the S&P 500 options are e$ciently priced and
that the S&P 500 index follows a one-factor di!usion. Trading schemes designed
to exploit the SPD di!erences are able to produce superior pro"ts. The high
Sharpe ratios achieved by these trading schemes demand excessive variation in
investors' marginal utilities, which further questions market e$ciency. One
possible explanation for this evidence is the presence of an S&P 500 peso
problem, whereby options incorporate a premium for the jump risk in the
underlying index that is absent from its recorded time series. We "nd some
evidence in favor of that interpretation.

Moving away from the restrictive nature of the univariate di!usion speci"ca-
tion, we were able to partly reconcile the di!erences between the index and
option implied SPDs by adding a jump component to the index dynamics. The
empirical results of this paper can therefore be interpreted alternatively as
evidence of the limitations of a one-factor di!usion structure for the underlying
asset returns rather than an indictment on the rationality of the options markets.
A further natural departure from this speci"cation would consist in incorporat-
ing stochastic volatility to our speci"cation. Our method can be extended to
incorporate the case where the volatility of the underlying asset is stochastic as
a separate process, rather than stochastic only through its dependence on the
asset price. The law of motion of the volatility process under the real probability
measure can be estimated using standard "ltering techniques. However, given
that volatility is a nontraded asset, its risk-neutral behavior cannot be solely
identi"ed by estimating the di!usion function as in Section 2.3.1. We can still
estimate a three-dimensional option price function as in Section 2.2 (with
volatility as the additional, third, regressor). Then by applying Ito( 's lemma we
can derive the drift and di!usion function of any derivative price. In the absence
of arbitrage, the respective market prices of S&P 500 risk and volatility risk
should be identical for all derivative assets that are subject to these two sources
of risk. This implies (as in the APT) that the instantaneous expected excess
return of these derivative assets should be an average of the market prices of risk
weighted by the size of their respective exposures, i.e., their di!usion coe$cients.
Therefore, given the instantaneous expected excess returns and the di!usion
function for options of two di!erent maturities, we can solve for the implied
market prices of risk. We can then obtain an overidentifying restriction by
checking if the implied market prices of risk are consistent with the derived
expected instantaneous excess return and di!usion function for a di!erent set of
derivative prices, for instance options with a third maturity. Hence, we could
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still, at least theoretically, test the validity of the model without resorting to any
assumptions on preferences.
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Appendix A. Assumptions and asymptotic distributions

For each three-month subperiod, option prices form a panel data, consisting
of N observation periods and J options per period. The sample size relevant for
the computation of the cross-sectional SPD fH is n"NJ, and N for the
computation of the time-series SPD gH. We make the following assumptions on
the data used to construct the nonparametric regression (2.9), i.e., (�,ZI ) where
ZI ,[X/F

��� , �]
. The nonparametric regression function is �( (ZI ), and we wish to
estimate its second partial derivative with respect to the "rst component X/F

���
of the vector ZI .

Assumption A.1.

1. The process �>
�
,(�

�
,ZI

�
): i"1,2, n	 is strictly stationary with

E[��
�
](R, E[��ZI

�
���](R

and is �-mixing with mixing coe$cients �
�
that decay as jPR at a rate at

least as fast as j
�, b'19/2. The joint density of (>
�
,>

���
) exists for all j and

is continuous.
2. The density �(�,ZI ) is p-times continuously di!erentiable with respect to ZI ,

with p'm, and � and its derivatives are bounded and in ¸
�
(R���I ). The

marginal density of the nonparametric regressors, �(ZI ), is bounded away
from zero on every compact set in R�I .

3. �(ZI )�(ZI ) and its derivatives are bounded. The conditional variance

s�(ZI ),E[(�!�(ZI ))� � ZI ] (A.1)

is bounded and in ¸
�
(R�I ). The conditional fourth moment E[(�!�(ZI ))� � ZI ]

is bounded.
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Dexnition A.1. A kernel function k is of order q if

�
��


�

z�k(z) dz"�
1 if l"0

0 if 0(l(q

(!1)�q!�
�

if l"q

where l is an integer and ���

�

�z���k(z)�dz(R for all 0)l)q.

Assumption A.2. The kernel functions k
��	

and k� are bounded, three-times
continuously di!erentiable, and have derivatives which are bounded and in
¸
�
(R). k

��	
is of order q

��	
and k� is of order q� . The bandwidths are given by

h
��	

"c
��	

s(X/F)n
����I ������	����, h�"c�s(�)n
����I ���� � (A.2)

where s(X/F) and s(�) are the unconditional standard deviations of the non-
parametric regressors, c

��	
,�

��	
/ln (n), with �

��	
constant, and c�,��/ln (n),

with �� constant.

In practice, we use the kernel functions

k
���
(z),e
�

���/�2�, k
���
(z),(3!z�)e
�

���/�8� (A.3)

which are of order q"2 and q"4 respectively. We then obtain, as in AmK t-
Sahalia and Lo (1998), with ZI "[X/F

��� , �]:

Proposition A.1. Under Assumptions A.1 and A.2

n���h���
��	

h���� [ fK H(S
�
)!fH(S

�
)] �P N(0, ��

�
H ) (A.4)

where �H
��
/�� is the option's gamma evaluated at �( (ZI ) and

��
�

H,�e���� �
�H

��
��

(�( (ZI ), Z)�
�s�(ZI )(���


�
(k���

��	
)�(�) d�)(���


�
k�� (�) d�)

�(ZI )F�
���

. (A.5)

To estimate the time-series SPD gH, we make the following assumptions:

Assumption A.3. The drift function �( ) ) in (2.2) is a bounded function, twice
continuously di!erentiable with bounded derivatives. The instantaneous volatil-
ity function �( ) ) in (2.2) and (2.3) has three continuous and bounded derivatives,
and there exist two constants c and C such that for all S.
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Assumption A.4. The kernel function k
��

is in ¸
�
(R) and is of order q

��
"2. The

bandwidth h
��

to form �(
��
( ) ), is given by

h
��

"c
��

N
��� (A.6)

where c
��

,�
��
/ln(N), and �

��
is a constant.

Assumption A.5. The kernel function k
��

is in ¸
�
(R) and is of order q

��
. The

bandwidth h
��

is given by

h
��

"c
��

M
��������� � (A.7)

where M is the number of Monte-Carlo simulations, c
��

,�
��

/ln(M), and
�
��

is a constant.

We discuss in Section 3 how we select the constants �
��

and �
��

. Letting the
number of simulated sample paths of (2.3) go to in"nity, we obtain

Proposition A.2. Under Assumptions A.3 and A.4:

[g( H
�
(S

�
)!gH

�
(S

�
)]"O



(N
���). (A.8)

Appendix B. A nonparametric comparison test of fH"uH

To construct the estimators involved in the test statistic of Section 2.4, we use
the following bandwidth and kernel function, for the one-dimensional
semiparametric model corresponding to ZI "[X/F

���]:

Assumption B.1. The bandwidth h
��	

to estimate fK H in (2.21) is given by

h
��	

"�
��	

n
�����	

where �
��	

is constant, and �
��	

satis"es

0(�
��	

(2q
��	

#

9

2
(B.1)

where q
��	

is the order of the kernel function k
��	

.

We then obtain

Proposition B.1. Under Assumptions A.1, A.3}A.5 and under H



nh���
��	

D( fK H, g( H)!h
���
��	

B
�

�P N(0,��
�
) (B.2)
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Table 7
Kernel constants in asymptotic distributions�

Di!erentiation order m 0 1 2

���

�

(k���
���
)�(w) dw �

��
�

�
��

�
�

	�
�

���

�

(k���
���
)�(w) dw ��

���
�

���
���

�
���

��	�
�

���

�

(���

�

k���
���
(w)k���

���
(w#v) dw)�dv �

����
�

�����
�
�

������

�Kernel constants that characterize the asymptotic variances of the nonparametric estimators, and
the distribution of the test statistic. The kernel functions k

���
and k

���
are de"ned in (A.3). k��� denotes

the mth derivative of k.

where

B
�

"��
��


�

k��(w) dw��ZI
��(ZI )�� (ZI ) dZI (B.3)

��
�

"2��
��


�
��

��


�

k�(w)k�(w#v) dw�
�
dv��ZI

��(ZI )�� �(ZI ) dZI

(B.4)
where

�� (ZI ),�e���� �
�H

��
(�(ZI ),Z)
�� �

�
�(ZI ). (B.5)

Note that the sampling variation of g( H does not enter the asymptotic distribu-
tion of the test statistic under H



, due to the faster rate of convergence of

g( H compared to fK H (compare (A.4) to (A.8)).
To estimate consistently the conditional variance of the regression, s�(ZI )

we calculate the di!erence between the kernel estimate of the regression of
the squared dependent variable �� on ZI and the squared of the regression �(ZI )
of the dependent variable � on ZI . The regression E[�� � ZI ] is estimated
with bandwidth h

��
"�

��
n
�����), �

��
"�� and �

��
constant. The test statistic

is formed by standardizing the asymptotically normal distance measure D:
we estimate consistently B

�
and ��

�
by plugging-in the estimate of the condi-

tional variance ��(ZI ), then subtract the asymptotic mean and divide by the
asymptotic standard deviation. The test statistic then has the asymptotic N(0, 1)
distribution. Since the test is one-sided (we only reject when D( fK H, g( H), hence
the test statistic, is large and positive), the 10% critical value is 1.28, while the
5% value is 1.64. We "x the variables in Z that are excluded from ZI at their
sample means. Kernel constants appearing in Propositions A.1 and A.2 are
given in Table 7.
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Appendix C. Performance of the di4usion estimators in Monte-Carlo simulations

In our simulations, we set the drift of the log-return process to be constant at
9% per year, which corresponds to the long-run historical ex-dividend average of
the S&P 500 index. We calculate the volatility estimator with a given bandwidth
h
��

to each path and obtain the estimated volatility as a function of the price level.
To investigate the sensitivity of the estimators to the choice of bandwidths, we
evaluate the estimators over a range of possible bandwidth values. Two perfor-
mance measures of the estimators are used for each choice of bandwidth.

We adopt as an evaluation criterion the mean integrated squared error
(MISE) of the estimator. For each path, point-by-point squared estimation
errors (SE) are calculated. Then the SEs are weighted by their density (of S over
all paths) and are summed up, producing the integrated squared error (ISE). The
average ISE over the 1000 paths becomes the MISE. However, the MISE does
not explicitly tell how well the estimator captures the shape of the di!usion
function. In fact it tends to favor the smoothness of the estimate over how
accurately the shape is captured. In practice, when estimating the di!usion
function, we are not only interested in its level, but also its shape which
determines the skewness and the kurtosis of the time-series SPD gH.

Thus we propose a second performance measure that emphasizes how well the
shape is captured (since the di!usion function is parametrically speci"ed, with
parameters that determines the shape). The second measure describes how well
the estimated di!usion function can reproduce these parameters. To obtain the
estimated value �K "(a, b, c) of �"(
,�, �) for each path, we run an OLS regres-
sion. The average of (a, b, c) over the 1000 paths are calculated.We then proceed to
test the separate hypotheses 
"




, �"�



, �"�



(the subscript 0 denotes true

values) using the t-test, and the joint hypothesis �"�


, using the ��-test. We then

select a bandwidth that balances MISE-minimization and shape preservation.
In general, the FZ estimators capture the level and slope very well over almost

all shapes of volatility considered. The only exception is that the estimator tends
to under-estimate the slope as the volatility level gets lower. When the level and
the spread is large, FZ captures the curvature well, but not when the spread is
small and the level is low. However, one can argue that the ability to capture the
curvature is more crucial in the former case. To be closer to the theoretical
assumptions of FZ, we also generated paths using a small drift (3%) and found
that it resulted in a slight improvement in the curvature estimation. Finally,
when we increased the number of draws per day the performance of the
estimator increased substantially, providing support for the asymptotic conver-
gence results that we rely on. Table 8 summarizes quantitatively the estimator's
ability to capture the shape of the �( ) ) for a variety of possible con"gurations. In
Fig. 11, we select four typical shapes of the true function �( ) ) and plot the
average �(

��
( ) ) estimated over all the simulated sample paths, as well as its 95%

Monte-Carlo con"dence interval.
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Table 8
Monte-Carlo simulations of the di!usion estimator�

Shape of ��( ) ) Estimation
�( �
��
( ) )

Error
�( �
��

Relative
error

Spread Slope Curvature Figure

Flat Flat Flat 11a 0.000233 0.000045 5.2
Large Up Concave 0.000512 0.0229 0.02
Large Up Flat 0.00106 0.00962 0.11
Large Down Flat 11b 0.000871 0.0253 0.03
Large Down Convex 0.00911 0.0323 0.28
Small Up Flat 0.000699 0.0112 0.06
Small Up Concave 11c 0.000808 0.0216 0.04
Small Down Flat 0.000617 0.0129 0.05
Small Down Convex 11d 0.000955 0.0294 0.03

�This table reports the results of Monte-Carlo simulations of the di!usion estimator for a variety
of shapes of the true di!usion function ��( ) ), which is parameterized as �(S)"
#

�(S!S


)#�(S!S



)�. The parameter 
 is set at 0.20. A &large' spread represents the cases where

�"$0.002 and �"$0.00004, whereas a &small' spread corresponds to the cases where
�"$0.001 and �"$0.00002. The sign of � and � determines the quali"ers up, down, concave
and convex in the usual sense. &Flat' corresponds to a parameter value of 0. The estimation error
reported in the table is the integrated mean squared error of the estimator (squared bias plus
variance), averaged over all the simulations. For each shape of the di!usion function, we have used
a bandwidth that balances MISE-minimization and shape preservation. In the case where the true
function is constant (and we know it), the maximum-likelihood estimator is naturally the most
e$cient choice (see the "rst row of the table). However, in general the estimation error of �( �

��
is less

than 5% of that of �( �
��

.

Appendix D. Monte-Carlo simulations of the conditional moment regressions

In Table 9, we report the results of Monte-Carlo simulations of the condi-
tional moments regressions used to compare the time-series and cross-sectional
conditional SPDmoments in Section 3.2, speci"cally Table 2. These simulations
are useful to assess the degree of small sample bias and variance inherent in these
conditional moments comparisons in conditions that approximate those of the
real data.

We replicate 500 economies with 11 year histories consisting of 55 subperiods
each. Each subperiod consists of 10,000 simulated sample paths for the underly-
ing S&P 500 index assumed to follow Cox's CEV process

dSH
�
"(r!�)SH

�
dt#�(SH

�
)� d=H

�
.

We set the initial value of the index at 450, the risk free rate r at 5% and the
dividend payout rate � at 0%. For each period, we draw the volatility parameter
from a normal distribution with mean of 35% (the real data average) and
a standard deviation of 15%, with a cap and #oor of 70% and 5%, respectively.
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Fig. 11. Monte-Carlo con"dence interval for the estimated �. (a) #at spread, #at slope, #at
curvature; (b) large spread, down slope, #at curvature; (c) small spread, up slope, concave curvature;
(d) small spread, down slope, convex curvature.

We then calculate returns from the simulated paths and estimate the time-series
SPD using the same estimator as with the real data. On the option side,
we analytically price a cross-section of call options for each of the 55 periods
of the 500 sets using the closed-form CEV formula. The strikes range from 25%
in the money to 35% out of the money. The time-to-maturity is three months, as
in the real data. We use the same volatility parameter as that in the matching
index simulation subperiod so that in the absence of noise and estimation error
the two SPDs would by construction be identical. As with the real data, we then
compute the cross-sectional SPD for each of the 55 subperiods from the
associated cross-section of option prices. Since the cross-sectional moments are
more precisely estimated than their time-series counterparts, the regressions are

Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110 107



Table 9
Monte-Carlo simulations of the conditional moments regressions�

Moment Intercept MC average
(MC standard deviation)

Slope MC average
(MC standard deviation)

R� MC average
(MC standard deviation)

Mean !0.0004 1.019 0.73
(0.001) (0.09) (0.06)

Volatility !0.002 0.988 0.99
(0.006) (0.009) (0.001)

Skewness 0.012 1.08 0.75
(0.03) (0.08) (0.06)

Kurtosis !0.14 1.22 0.42
(0.11) (0.20) (0.10)

�This table reports the results of Monte-Carlo simulations of the conditional moment regressions.
For each simulation, we compute the intercept and slope coe$cients and R� from a regression of the
conditional moments using the simulated 55 subperiods. The table reports the mean and standard
deviations obtained from 500 overall simulations. The setup for the simulations is detailed in
Appendix D and reproduces the main features of the real data, including sample size, number of
subperiods and general level of noise. The results of these simulations show that the deviations
between the cross-sectional and time-series conditional skewnesses and kurtoses reported in Table 2
are signi"cant in the sense of being outside their respective Monte-Carlo con"dence intervals.

corrected for the potential errors in variables problem (where y is regressed on
a constant and x, with x measured with error) by inferring the coe$cients from
the better-estimated reverse regression.

The closed-form expression of the CEV SPD is

fH
�
(S

�
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where �"r!� (see Cox, 1996). This expression reduces to
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for the absolute model (
"0).
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