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Motivation

e Advanced combustion strategies rely on
- Low/moderate temperature combustion
- High-pressure operating conditions
— (Ultra)Lean and stratified combustion
— Emerging and alternative fuel combustion

e Challenges

— Shift from mixing-controlled to
kinetics-controlled combustion regime

e Increasing relevance of ignition-
kinetics and low-temperature
chain-branching reactions

e Increasing significance of turbulence
and turbulence/chemistry interaction

e Finite-rate chemistry effects
— Operation near stability limit




Motivation

e Objective

— Development of high-fidelity combustion for prediction of
turbulent reacting flows under consideration of

e Finite-rate chemistry
e Turbulence/chemistry coupling
e Transient combustion-dynamical processes

e Relevance
— Identify and isolate combustion-physical processes
— Combustor-design, control, and optimization
— Guide experimental instrumentation




Overview

e Motivation

e LES-combustion modeling
— Flamelet-based formulation

e Part 1: Modeling and simulation of combustion-physical
processes: LES of lifted vitiated flames

o Part 2: Guide experimental instrumentation: Turbulent
inhomogeneities and facility-effects?

e Summary and conclusions




Overview

e LES-combustion modeling
- Flamelet-based formulation




LES Combustion Modeling

e LES Flamelet-based combustion models

— Representation of turbulent flame as
unsteady reaction-diffusion layer that is
embedded in turbulent flame

— Interaction of flame structure with
turbulent environment leads to
stretching, deformation, and extinction
of flame




LES Combustion Modeling

e LES flamelet-based combustion model
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LES Combustion Modeling

e Flamelet-structure in turbulent reacting flows
— Analysis Tools: DNS-database! of reacting jet-in-cross-flow
e Fuel: N2-diluted H2-jet, 350 K
e Oxidizer: Air, 750 K
e Extract instantaneous local flamelet structure from
DNS-database
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1 Grout et al. Proc. Combust. Inst. 2011; Kolla et al. US Nat. Meeting 2011



LES Combustion Modeling

e Evolution of 1D-flamelet-elements in JICF
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LES Combustion Modeling

e LES Flamelet-based combustion models

— Parameterization of combustion process
in terms of reduces set of scalars

— Account for detailed chemistry
— Tabulation of reaction chemistry

— Consideration of turbulence
chemistry coupling
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Overview

e Part 1: Modeling and simulation of combustion-physical
processes: LES of lifted vitiated flames
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Autoignition in Turbulent Flames

e Modeling challenges in predicting autoignition in
turbulent flames

— Autoignition is transient process;
requires accurate description of
temporal flame-evolution

— Flame stability and ignition
dynamics strongly dependent on
scalar mixing and flame/turbulence
interaction

e Modeling approach!

— Autoignition requires consideration of transient species
formation,

described by unsteady flamelet equations

— Turbulence/chemistry interaction: Presumed PDF-closure to

consider effects of subgrid-mixing and unresolved flame
structure

1 IThme & See, Combustion & Flame, 157, 2010
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Autoignition in Turbulent Flames

e Conditions for flame-ignition in diffusion flames
— Autoignition is transient process
— Sufficiently low scalar dissipation rate

— Flame ignition occurs under conditions corresponding to
“most-reactive mixture”

— Build-up of radical pool through chain-branching reaction
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Autoignition in Turbulent Flames

e Experimental configuration 0
— Lifted flame in vitiated co-flow

— Fuel: methane/air 1:2 75

— Co-flow temperature: 1350 K

— Co-flow composition from premixed
H,-Air reaction product

60

Q45
e Computational setup w0
— Grid: 2.5 Mio grid points
— Reaction Chem.: GRI 2.11, .
(also used GRI 3.0, USC-mech II)
— 5-dimensional chemistry table with
grid-refinement METIET -

1 Cabra, Chen, Dibble, Karpetis, Barlow, CF, 143, 2005 14



Autoignition in Turbulent Flames
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Location of flame-base controlled by HO,-
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Autoignition in Turbulent Flames

o Effects of turbulence and scalar mixing
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Autoignition in Turbulent Flames

e Instantaneous temperature field
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Autoignition in Turbulent Flames

e Instantaneous temperature field
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Autoignition in Turbulent Flames

e Centerline profiles

e Experiment |
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Autoignition in Turbulent Flames

e Radial profiles
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Summary and Conclusions

e LES-modeling of lifted vitiated flames

e Key modeling components
- Transient flame evolution

— Accurate description of turbulent mixing and scalar dissipation
rate

e Combustion-physical insights
— Transient flame evolution
— Identified significance of flame/turbulence interaction

- Homogeneous reactor-model under-predicts ignition onset
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Overview

e Part 2: Guide experimental instrumentation: Presence of
turbulence in chemical-kinetics facilities?
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Turbulent Inhomogeneities and Facility Effects

e Question: Can we apply “lessons-learned” from LES
simulations to characterize experimental facilities?
— Shock-tubes
- Flow-reactors
— Rapid compression machines

e Source of non-idealities in experimental facilities!/2:3
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1 Petersen et al., Comb. & Flame, 149, 244 (2007); 2 Chaos & Dryer, Combust. Sci. and 23
Tech., 180, 1053 (2008); 3 Burke, Chaos, Dryer, & Ju, Comb. & Flame, 157, 618 (2010)



Turbulent Inhomogeneities and Facility Effects

e Research Objectives

— Use high-fidelity simulation and non-equilibrium
formulation to isolate parametric contributions of non-
idealities in experimental facilities

— Research emphasis
e Identify parametric sensitivities

e Reconcile observed differences between experiments and
detailed model-formulations

— Facilities
e Shock-tube
e Flow-reactor
e Rapid compression machine
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Turbulent Inhomogeneities and Facility Effects
Shock-Tube

e Non-ideal processes in shock-tubes
1. Non-ideal rapture of diaphragm?*
e Finite opening time of diaphragm
e Contribution to shock attenuation: 30%

2. Boundary layer growth?*

e Formation of viscous boundary layer
behind initial shock

3. Shock reflection and bifurcation”

e Lift-off of boundary layer resulting
in formation of separation region

4. Inhomogeneous ignition and
weak-to-strong ignition transition®

e Ignition proceeds as multi-dimensional
heterogeneous process

# Petersen, E. L. & Hanson, R., Shock Waves, 10 (2001); $ Mirels, H., NACA-TN 3278 (1956);

Mirels, H., NACA-TN 3401 (1955); %Yoo, Mitchell, Davidson, Hanson, Shock Waves, 21, 2011 25



Turbulent Inhomogeneities and Facility Effects
Shock-Tube

e Modeling challenges in simulating shock-tubes
— Disparity of spatial and temporal scales
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— AMR exploits multiscale nature of
hydro-dynamic problem by locally
adjusting computational effort to
maintain uniform level of accuracy#:%

# Deiterding, R., Computers & Structures, 87, 769, 2009; $ Berger, M. & Colella, P., JPC, 1982 26
(1988); % C. Pantano, et al. JCP, 221 (1) (2006) 63-87.



Turbulent Inhomogeneities and Facility Effects
Shock-Tube

e Shock-bifurcation
— Simulation of Ar-diluted H,/O, mixture at 5 and 10 bar
pressure
—->Relevant condition for weak and strong ignition regime
—>Adiabatic and isothermal wall conditions
— Shock tube setup T e 3
e Length: 1m
e Diameter: 5 cm
e Helium in driver section *
— Target condition:
e T-=1100 K, ps=10 bar

18.0 3 o o
».. Simulation
0.180 0.185 0.190 0.195

Experiment?

— Chemical mechanism:
e Burke et al.! (2011)

1 Burke, Chaos, Ju, Dryer, Klippenstein, 1JCK, 44, 2011 27
2 Yoo, Mitchell, Davidson, Hanson, Shock Waves, 21, 2011



Results: Shock Bifurcation

e Shock-bifurcation

- Instantaneous temperature evolution shows rich flow-field

structure: Boundary layer separation, Shock-bifurcation,
Boundary heating
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Turbulent Inhomogeneities and Facility Effects
Shock-Tube

e Ignition
— Isothermal wall

Var: Temperature
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— Observations:

e Ignition is initiated at end-wall

e Flame propagation towards unburned mixture (region of favorable
pressure gradient)
- non-homogeneous ignition
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Turbulent Inhomogeneities and Facility Effects
Flow-Reactors
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Turbulent Inhomogeneities and Facility Effects
Flow-Reactors
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Turbulent Inhomogeneities and Facility Effects
Flow-Reactors

e Experimentally observed stochastic
ignition suggests sensitivity to
initial conditions
— Mixture composition
- Temperature
e Unsteady heating
e Wall-heat losses
e Temp-difference btw. fuel and oxidizer

e Consider inhomogeneities

- Equivalence ratio: sample from Sl T T
. . - [ Experiment 1
experimentally determined 4 . Model _ .
beta-distribution 3l N _'

— Temperature fluctuations: Sample §2-_
from Gaussian with specified T’

Az ]
e Use fully-developed turbulent o L HMH H I ]
plpe-ﬂOW at Re = 104 0 0.2 0.4 0.6 0.8 1

Equivalence Ratio, ¢

1 Santoro (2009)
2 Samuelsen et al. (2003) 32



Turbulent Inhomogeneities and Facility Effects
Flow-Reactors

e Mixture variation: $=0.4; ¢’=0.135

e Temperature variation: T=850 K; T' = {0, 25, 50, 75} K
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Turbulent Inhomogeneities and Facility Effects
Flow-Reactors

e Mixture variation: $=0.4; ¢’=0.135
e Temperature variation: T=850 K; T' = {0, 25, 50, 75} K
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Summary and Conclusions

e Turbulence/chemistry coupling processes

Increased relevance for low-Damkoehler/high-Karlovitz combustion
processes: oxygen-diluted comb.; autoignition; preheat-comb.

Turbulence promotes mixing, exchange of radicals and enthalpy

Ignition occurs at preferred sites: “"most-reactive” mixture and regions of
low strain

e Validated high-fidelity LES combustion models have been
developed and are available to accurately capture ignition
processes

Models rely on experimental data

e Simulations can assist and complement experimental
iInvestigations

Identify experimental sensitivities

Guide potential modifications to mitigate facility effects

Reconcile discrepancies btw. experiments and theory

Example: Turbulence/chemistry coupling in shock-tubes and flow-reactors
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